[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
23.1 Introduction to fast Fourier transform | ||
23.2 Functions and Variables for fast Fourier transform | ||
23.3 Introduction to Fourier series | ||
23.4 Functions and Variables for Fourier series |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The fft
package comprises functions for the numerical (not symbolic) computation
of the fast Fourier transform.
@ref{Category: Fourier transform} · @ref{Category: Numerical methods} · @ref{Category: Share packages} · @ref{Category: Package fft}
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Translates complex values of the form r %e^(%i t)
to the form a + b %i
.
load ("fft")
loads this function into Maxima. See also fft
.
The magnitude and phase, r
and t
, are taken from magnitude_array and
phase_array, respectively. The original values of the input arrays are
replaced by the real and imaginary parts, a
and b
, on return. The outputs are
calculated as
a: r cos (t) b: r sin (t)
The input arrays must be the same size and 1-dimensional. The array size need not be a power of 2.
polartorect
is the inverse function of recttopolar
.
@ref{Category: Package fft} · @ref{Category: Complex variables}
Translates complex values of the form a + b %i
to the form r %e^(%i t)
.
load ("fft")
loads this function into Maxima. See also fft
.
The real and imaginary parts, a
and b
, are taken from real_array and
imaginary_array, respectively. The original values of the input arrays
are replaced by the magnitude and angle, r
and t
, on return. The outputs are
calculated as
r: sqrt (a^2 + b^2) t: atan2 (b, a)
The computed angle is in the range -%pi
to %pi
.
The input arrays must be the same size and 1-dimensional. The array size need not be a power of 2.
recttopolar
is the inverse function of polartorect
.
@ref{Category: Package fft} · @ref{Category: Complex variables}
Fast inverse discrete Fourier transform. load ("fft")
loads this function
into Maxima.
ift
carries out the inverse complex fast Fourier transform on
1-dimensional floating point arrays. The inverse transform is defined as
x[j]: sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)
See fft
for more details.
@ref{Category: Package fft}
Fast Fourier transform and related functions. load ("fft")
loads these functions into Maxima.
fft
and ift
carry out the complex fast Fourier transform and
inverse transform, respectively, on 1-dimensional floating
point arrays. The size of imaginary_array must equal the size of real_array.
fft
and ift
operate in-place. That is, on return from fft
or ift
,
the original content of the input arrays is replaced by the output.
The fillarray
function can make a copy of an array, should it
be necessary.
The discrete Fourier transform and inverse transform are defined
as follows. Let x
be the original data, with
x[i]: real_array[i] + %i imaginary_array[i]
Let y
be the transformed data. The forward and inverse transforms are
y[k]: (1/n) sum (x[j] exp (-2 %i %pi j k / n), j, 0, n-1) x[j]: sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)
Suitable arrays can be allocated by the array
function. For example:
array (my_array, float, n-1)$
declares a 1-dimensional array with n elements, indexed from 0 through n-1 inclusive. The number of elements n must be equal to 2^m for some m.
fft
can be applied to real data (imaginary array all zeros) to obtain
sine and cosine coefficients. After calling fft
, the sine and cosine
coefficients, say a
and b
, can be calculated as
a[0]: real_array[0] b[0]: 0
and
a[j]: real_array[j] + real_array[n-j] b[j]: imaginary_array[j] - imaginary_array[n-j]
for j equal to 1 through n/2-1, and
a[n/2]: real_array[n/2] b[n/2]: 0
recttopolar
translates complex values of the form a + b %i
to
the form r %e^(%i t)
. See recttopolar
.
polartorect
translates complex values of the form r %e^(%i t)
to the form a + b %i
. See polartorect
.
demo ("fft")
displays a demonstration of the fft
package.
@ref{Category: Package fft}
Default value: 0
fortindent
controls the left margin indentation of
expressions printed out by the fortran
command. 0 gives normal
printout (i.e., 6 spaces), and positive values will causes the
expressions to be printed farther to the right.
@ref{Category: Translation and compilation}
Prints expr as a Fortran statement.
The output line is indented with spaces.
If the line is too long, fortran
prints continuation lines.
fortran
prints the exponentiation operator ^
as **
,
and prints a complex number a + b %i
in the form (a,b)
.
expr may be an equation. If so, fortran
prints an assignment
statement, assigning the right-hand side of the equation to the left-hand side.
In particular, if the right-hand side of expr is the name of a matrix,
then fortran
prints an assignment statement for each element of the matrix.
If expr is not something recognized by fortran
,
the expression is printed in grind
format without complaint.
fortran
does not know about lists, arrays, or functions.
fortindent
controls the left margin of the printed lines.
0 is the normal margin (i.e., indented 6 spaces). Increasing fortindent
causes expressions to be printed further to the right.
When fortspaces
is true
, fortran
fills out
each printed line with spaces to 80 columns.
fortran
evaluates its arguments;
quoting an argument defeats evaluation.
fortran
always returns done
.
Examples:
(%i1) expr: (a + b)^12$ (%i2) fortran (expr); (b+a)**12 (%o2) done (%i3) fortran ('x=expr); x = (b+a)**12 (%o3) done (%i4) fortran ('x=expand (expr)); x = b**12+12*a*b**11+66*a**2*b**10+220*a**3*b**9+495*a**4*b**8+792 1 *a**5*b**7+924*a**6*b**6+792*a**7*b**5+495*a**8*b**4+220*a**9*b 2 **3+66*a**10*b**2+12*a**11*b+a**12 (%o4) done (%i5) fortran ('x=7+5*%i); x = (7,5) (%o5) done (%i6) fortran ('x=[1,2,3,4]); x = [1,2,3,4] (%o6) done (%i7) f(x) := x^2$ (%i8) fortran (f); f (%o8) done
@ref{Category: Translation and compilation}
Default value: false
When fortspaces
is true
, fortran
fills out
each printed line with spaces to 80 columns.
@ref{Category: Translation and compilation}
Returns a rearranged representation of expr as
in Horner's rule, using x as the main variable if it is specified.
x
may be omitted in which case the main variable of the canonical rational expression
form of expr is used.
horner
sometimes improves stability if expr
is
to be numerically evaluated. It is also useful if Maxima is used to
generate programs to be run in Fortran. See also stringout
.
(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155; 2 (%o1) 1.0E-155 x - 5.5 x + 5.2E+155 (%i2) expr2: horner (%, x), keepfloat: true; (%o2) (1.0E-155 x - 5.5) x + 5.2E+155 (%i3) ev (expr, x=1e155); Maxima encountered a Lisp error: floating point overflow Automatically continuing. To reenable the Lisp debugger set *debugger-hook* to nil. (%i4) ev (expr2, x=1e155); (%o4) 7.0E+154
@ref{Category: Numerical methods}
Finds a root of the expression expr or the function f
over the closed interval [a, b].
The expression expr may be an equation,
in which case find_root
seeks a root of lhs(expr) - rhs(expr)
.
Given that Maxima can evaluate expr or f over [a, b]
and that expr or f is continuous,
find_root
is guaranteed to find the root,
or one of the roots if there is more than one.
find_root
initially applies binary search.
If the function in question appears to be smooth enough,
find_root
applies linear interpolation instead.
The accuracy of find_root
is governed by find_root_abs
and find_root_rel
.
find_root
stops when the function in question
evaluates to something less than or equal to find_root_abs
,
or if successive approximants x_0, x_1 differ by no more than
find_root_rel * max(abs(x_0), abs(x_1))
.
The default values of find_root_abs
and find_root_rel
are both zero.
find_root
expects the function in question to have a different sign at the endpoints
of the search interval.
If this condition is not met,
the behavior of find_root
is governed by find_root_error
.
When find_root_error
is true
,
find_root
prints an error message.
Otherwise find_root
returns the value of find_root_error
.
The default value of find_root_error
is true
.
If f evaluates to something other than a number at any step in the search algorithm,
find_root
returns a partially-evaluated find_root
expression.
The order of a and b is ignored; the region in which a root is sought is [min(a, b), max(a, b)].
Examples:
(%i1) f(x) := sin(x) - x/2; x (%o1) f(x) := sin(x) - - 2 (%i2) find_root (sin(x) - x/2, x, 0.1, %pi); (%o2) 1.895494267033981 (%i3) find_root (sin(x) = x/2, x, 0.1, %pi); (%o3) 1.895494267033981 (%i4) find_root (f(x), x, 0.1, %pi); (%o4) 1.895494267033981 (%i5) find_root (f, 0.1, %pi); (%o5) 1.895494267033981 (%i6) find_root (exp(x) = y, x, 0, 100); x (%o6) find_root(%e = y, x, 0.0, 100.0) (%i7) find_root (exp(x) = y, x, 0, 100), y = 10; (%o7) 2.302585092994046 (%i8) log (10.0); (%o8) 2.302585092994046
@ref{Category: Algebraic equations} · @ref{Category: Numerical methods}
Returns an approximate solution of expr = 0
by Newton's method,
considering expr to be a function of one variable, x.
The search begins with x = x_0
and proceeds until abs(expr) < eps
(with expr evaluated at the current value of x).
newton
allows undefined variables to appear in expr,
so long as the termination test abs(expr) < eps
evaluates
to true
or false
.
Thus it is not necessary that expr evaluate to a number.
load(newton1)
loads this function.
See also realroots
, allroots
, find_root
, and mnewton
.
Examples:
(%i1) load (newton1); (%o1) /usr/share/maxima/5.10.0cvs/share/numeric/newton1.mac (%i2) newton (cos (u), u, 1, 1/100); (%o2) 1.570675277161251 (%i3) ev (cos (u), u = %); (%o3) 1.2104963335033528E-4 (%i4) assume (a > 0); (%o4) [a > 0] (%i5) newton (x^2 - a^2, x, a/2, a^2/100); (%o5) 1.00030487804878 a (%i6) ev (x^2 - a^2, x = %); 2 (%o6) 6.098490481853958E-4 a
@ref{Category: Algebraic equations} · @ref{Category: Numerical methods}
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
The fourie
package comprises functions for the symbolic computation
of Fourier series.
There are functions in the fourie
package to calculate Fourier integral
coefficients and some functions for manipulation of expressions.
@ref{Category: Fourier transform} · @ref{Category: Share packages} · @ref{Category: Package fourie}
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Returns true
if equal (x, y)
otherwise false
(doesn't give an
error message like equal (x, y)
would do in this case).
@ref{Category: Package fourie}
remfun (f, expr)
replaces all occurrences of f (arg)
by arg in expr.
remfun (f, expr, x)
replaces all occurrences of f (arg)
by arg in expr
only if arg contains the variable x.
@ref{Category: Package fourie}
funp (f, expr)
returns true
if expr contains the function f.
funp (f, expr, x)
returns true
if expr contains the function f and the variable
x is somewhere in the argument of one of the instances of f.
@ref{Category: Package fourie}
absint (f, x, halfplane)
returns the indefinite integral of f with respect to
x in the given halfplane (pos
, neg
, or both
).
f may contain expressions of the form
abs (x)
, abs (sin (x))
, abs (a) * exp (-abs (b) * abs (x))
.
absint (f, x)
is equivalent to absint (f, x, pos)
.
absint (f, x, a, b)
returns the definite integral of f with respect to x from a to b.
f may include absolute values.
@ref{Category: Package fourie} · @ref{Category: Integral calculus}
Returns a list of the Fourier coefficients of f(x)
defined
on the interval [-p, p]
.
@ref{Category: Package fourie}
Simplifies sin (n %pi)
to 0 if sinnpiflag
is true
and
cos (n %pi)
to (-1)^n
if cosnpiflag
is true
.
@ref{Category: Package fourie} · @ref{Category: Trigonometric functions} · @ref{Category: Simplification functions}
Default value: true
See foursimp
.
@ref{Category: Package fourie}
Default value: true
See foursimp
.
@ref{Category: Package fourie}
Constructs and returns the Fourier series from the list of
Fourier coefficients l up through limit terms (limit
may be inf
). x and p have same meaning as in
fourier
.
@ref{Category: Package fourie}
Returns the Fourier cosine coefficients for f(x)
defined on [0, p]
.
@ref{Category: Package fourie}
Returns the Fourier sine coefficients for f(x)
defined on [0, p]
.
@ref{Category: Package fourie}
Returns fourexpand (foursimp (fourier (f, x, p)), x, p, 'inf)
.
@ref{Category: Package fourie}
Constructs and returns a list of the Fourier integral coefficients of f(x)
defined on [minf, inf]
.
@ref{Category: Package fourie}
Returns the Fourier cosine integral coefficients for f(x)
on [0, inf]
.
@ref{Category: Package fourie}
Returns the Fourier sine integral coefficients for f(x)
on [0, inf]
.
@ref{Category: Package fourie}
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by root on July, 13 2009 using texi2html 1.76.