[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
13.1 Functions and Variables for Constants |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
%e
represents the base of the natural logarithm, also known as Euler's number.
The numeric value of %e
is the double-precision floating-point value 2.718281828459045d0.
@ref{Category: Constants}
%i
represents the imaginary unit, sqrt(- 1).
@ref{Category: Constants}
false
represents the Boolean constant of the same name.
Maxima implements false
by the value NIL
in Lisp.
@ref{Category: Constants}
ind
represents a bounded, indefinite result.
See also limit
.
Example:
(%i1) limit (sin(1/x), x, 0); (%o1) ind
@ref{Category: Constants}
inf
represents real positive infinity.
@ref{Category: Constants}
infinity
represents complex infinity.
@ref{Category: Constants}
minf
represents real minus (i.e., negative) infinity.
@ref{Category: Constants}
%phi
represents the so-called golden mean,
(1 + sqrt(5))/2.
The numeric value of %phi
is the double-precision floating-point value 1.618033988749895d0.
fibtophi
expresses Fibonacci numbers fib(n)
in terms of %phi
.
By default, Maxima does not know the algebraic properties of %phi
.
After evaluating tellrat(%phi^2 - %phi - 1)
and algebraic: true
,
ratsimp
can simplify some expressions containing %phi
.
Examples:
fibtophi
expresses Fibonacci numbers fib(n)
in terms of %phi
.
(%i1) fibtophi (fib (n)); n n %phi - (1 - %phi) (%o1) ------------------- 2 %phi - 1 (%i2) fib (n-1) + fib (n) - fib (n+1); (%o2) - fib(n + 1) + fib(n) + fib(n - 1) (%i3) fibtophi (%); n + 1 n + 1 n n %phi - (1 - %phi) %phi - (1 - %phi) (%o3) - --------------------------- + ------------------- 2 %phi - 1 2 %phi - 1 n - 1 n - 1 %phi - (1 - %phi) + --------------------------- 2 %phi - 1 (%i4) ratsimp (%); (%o4) 0
By default, Maxima does not know the algebraic properties of %phi
.
After evaluating tellrat (%phi^2 - %phi - 1)
and algebraic: true
,
ratsimp
can simplify some expressions containing %phi
.
(%i1) e : expand ((%phi^2 - %phi - 1) * (A + 1)); 2 2 (%o1) %phi A - %phi A - A + %phi - %phi - 1 (%i2) ratsimp (e); 2 2 (%o2) (%phi - %phi - 1) A + %phi - %phi - 1 (%i3) tellrat (%phi^2 - %phi - 1); 2 (%o3) [%phi - %phi - 1] (%i4) algebraic : true; (%o4) true (%i5) ratsimp (e); (%o5) 0
@ref{Category: Constants}
%pi
represents the ratio of the perimeter of a circle to its diameter.
The numeric value of %pi
is the double-precision floating-point value 3.141592653589793d0.
@ref{Category: Constants}
true
represents the Boolean constant of the same name.
Maxima implements true
by the value T
in Lisp.
@ref{Category: Constants}
und
represents an undefined result.
See also limit
.
Example:
(%i1) limit (1/x, x, 0); (%o1) und
@ref{Category: Constants}
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by root on July, 13 2009 using texi2html 1.76.