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Generic systems of conservation laws

We consider a generic system of conservation laws in d space dimensions:

∂tu+

d∑
i=1

∂iqi(u) = 0, x ∈ Rd, t > 0,

where:

• u ∈ Rm is the vector of m unknowns,
• qi are the (smooth) physical flux functions.

For n = (n1, . . . ,nd) ∈ Rd, the physical flux in direction n is defined by

q(u,n) =
d∑
i=1

qi(u)ni.

The homogeneous system is hyperbolic, i.e. the Jacobian matrix
∇uq(u,n) of the flux is diagonalizable with real eigenvalues.
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Objectives

This work concerns the derivation of a numerical method to
approximate systems of conservation laws, that:

• is high-order accurate,
• is stable without a CFL condition: CFL-less property,
• has the complexity of an explicit scheme,
• can be parallelized.

To achieve this, we select the vectorial kinetic relaxation framework:

• T. Platkowski and R. Illner, (1988), R. Natalini, (1998),
• F. Bouchut, (1999), D. Aregba-Driollet and R. Natalini, (2000),
• D. Coulette et al., Comput. & Fluids (2019),
• …
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Minimal vectorial kinetic representation

The goal is the approximate the (nonlinear) system of conservation laws

∂tu+

d∑
i=1

∂iqi(u) = 0, u ∈ Rm,

when τ goes to 0, with the following (linear) systems of kinetic equations:

∀k ∈ J0,dK, ∂tfk + vk ·∇fk =
1
τ
(mk(u) − fk),

where we have defined a set of constant vectors, the kinetic velocities:

V = (vk)k∈J0,dK.

For k ∈ J0,dK, we have defined:

• fk ∈ Rm the (d+ 1) kinetic unknowns;
• mk : Rm → Rm the (d+ 1) kinetic equilibrium functions;
• τ a (small) relaxation time.

Next step: Derive conditions on mk(u), knowing V.
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Conditions on the kinetic equilibrium functions

Summing the kinetic equations over k, and taking τ→ 0, we wish to
recover the conservation laws.

We first make the following assumption:
d∑

k=0

fk = u.

We now sum the kinetic equations over k.

∂t

( d∑
k=0

fk

)
+

d∑
k=0

vk ·∇fk =
1
τ

( d∑
k=0

mk(u) −
d∑

k=0

fk

)

=⇒ ∂tu+

d∑
k=0

vk ·∇fk =
1
τ

( d∑
k=0

mk(u) − u
)

To recover the conservation laws, the source term must vanish, and
the kinetic equilibrium functions mk must satisfy:

d∑
k=0

mk(u) = u.
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Conditions on the kinetic equilibrium functions

Formally, taking τ→ 0 in the kinetic equations

∂tfk + vk ·∇fk =
1
τ
(mk(u) − fk)

leads to fk = mk(u).

Injecting this formal limit in the summed kinetic equations, we get:

∂tu+

d∑
k=0

vk ·∇fk = 0 =⇒ ∂tu+

d∑
k=0

vk ·∇mk(u) = 0.

With vk = (vik)i∈J1,dK, we obtain:
d∑

k=0

vk ·∇mk(u) =
d∑

k=0

( d∑
i=1

vik ∂imk(u)
)

=

d∑
i=1

∂i

( d∑
k=0

vikmk(u)
)
.

Using the conservation laws, we get new conditions on mk:

∂tu+

d∑
i=1

∂i

( d∑
k=0

vikmk(u)
)

= 0 =⇒ ∀i ∈ J1, dK,
d∑

k=0

vikmk(u) = qi(u).
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Computing the kinetic equilibrium functions

Finally, the kinetic equilibrium functions satisfy:
d∑

k=0

mk(u) = u and ∀i ∈ J1,dK,
d∑

k=0

vikmk(u) = qi(u).

These conditions can be recast as a (d+ 1)× (d+ 1) linear system,
whose unknowns are the (d+ 1) vectors mk(u) ∈ Rm:

m0(u) + . . . + md(u) = u,
v10m0(u) + . . . + v1dmd(u) = q1(u),

...
...

...
vd0 m0(u) + . . . + vdd md(u) = qd(u).
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
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...

...
...

1 v1d . . . vdd

.
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An example in 3D

We take the following velocities, called the D3Q4 model1:

v0 = λ

11
1

, v1 = λ

 1
−1
−1

, v2 = λ

−1
1

−1

, v3 = λ

−1
−1
1

,

which leads to

V =


1 λ λ λ

1 λ −λ −λ

1 −λ λ −λ

1 −λ −λ λ

 =⇒ V−1 =
1
4λ


λ λ λ λ

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

.

Solving the linear system yields the kinetic equilibrium functions:

mk(u) =
1
4u+

1
4λ2q(u, vk).

1These velocities are orthogonal to the faces of a tetrahedron; we take λ =
√
3 for

the unit sphere to be included in this tetrahedron (subcharacteristic condition).
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Summary

We have successfully provided a vectorial kinetic relaxation
approximation of the system of conservation laws:

∂tu+

d∑
i=1

∂iqi(u) = 0 ! ∀k ∈ J0,dK, ∂tfk + vk ·∇fk =
1
τ
(mk(u) − fk).

Remark: Although the kinetic representation is linear, it contains
(d+ 1)×m unknowns instead of m, as well as a relaxation source term.

Remark: The kinetic system is similar to the BGK approximation in
gas dynamics, except that:
• the kinetic unknowns fk are vectors and have no real physical meaning,
• there is a finite number of kinetic velocities,
• we are only interested in the limit where τ goes to 0.

Next step: What if the original system has a source term?
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Generic systems of balance laws

We consider a generic system of balance laws in d space dimensions:

∂tu+

d∑
i=1

∂iqi(u) = s(u), x ∈ Rd, t > 0,

where:

• u ∈ Rm is the vector of m unknowns,
• qi are the (smooth) physical flux functions,
• s is the (smooth, potentially stiff) source term.

The homogeneous system is still supposed to be hyperbolic.
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Minimal vectorial kinetic representation

The goal is the approximate the (nonlinear) system of balance laws

∂tu+

d∑
i=1

∂iqi(u) = s(u), u ∈ Rm,

with the following (linear) system of kinetic equations:

∂tfk + vk ·∇fk = gk(u) +
1
τ
(mk(u) − fk),

where gk : Rm → Rm are the (d+ 1) kinetic source terms.

Next step: Derive conditions on gk(u).
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Computing the kinetic source terms

Recall that the kinetic variables and equilibrium functions satisfy:
d∑

k=0

fk =
d∑

k=0

mk(u) = u and ∀i ∈ J1,dK,
d∑

k=0

vikmk(u) = qi(u).

Summing the kinetic equations over k and taking the formal τ→ 0
limit, we get:

∂t

( d∑
k=0

fk

)
+

d∑
k=0

vk ·∇fk =
d∑

k=0

gk(u) +
1
τ

( d∑
k=0

mk(u) −
d∑

k=0

fk

)
,

=⇒ ∂tu+

d∑
i=1

∂iqi(u) =
d∑

k=0

gk(u).

For the kinetic equations to coincide with the balance laws, we need:
d∑

k=0

gk(u) = s(u).
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Computing the kinetic source terms

A Chapman-Enskog expansion performed in [D. Coulette et al.,
(2019)] shows that taking

gk(u) = (∇umk(u)) s(u)

cancels out some first-order terms.

In addition, we get
d∑

k=0

gk(u) =
( d∑
k=0

∇umk(u)
)
s(u)

= ∇u

( d∑
k=0

mk(u)
)
s(u)

= (∇uu) s(u) = s(u),

and the consistency condition is satisfied.
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Summary

We have successfully provided a vectorial kinetic relaxation
approximation

∀k ∈ J0,dK, ∂tfk + vk ·∇fk = gk(u) +
1
τ
(mk(u) − fk)

of the system of balance laws

∂tu+

d∑
i=1

∂iqi(u) = s(u).

Next step: Propose a numerical scheme to approximate the
solutions of the vectorial kinetic representation.

We proceed with a splitting method:
• first, we treat the transport step ∂tfk + vk ·∇fk = 0;
• then, the relaxation-source step ∂tfk = gk(u) +

1
τ
(mk(u) − fk).
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Updating the physical variables

We seek a numerical method to approximate solutions to the equation

∂tfk = gk(u) +
1
τ
(mk(u) − fk),

i.e. to find fn+1k at time tn+1, knowing fnk and un at time tn.

First, summing this equation over k leads to

∂t

( d∑
k=0

fk

)
=

d∑
k=0

gk(u) +
1
τ

( d∑
k=0

mk(u) −
d∑

k=0

fk

)
,

which yields, after arguing the properties of fk, mk and gk:

∂tu = s(u).

Applying the Crank-Nicolson time discretization leads to:

un+1 − un
∆t =

s(un) + s(un+1)
2 .
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Over-relaxation

For clarity, we temporarily take gk = 0 and simplify the relaxation step:

∂tf =
1
τ
(m(u) − f ).
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τ

f n +

∆t
τ

1+ ∆t
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f n+1 = (1−ω)f n +ωm(un+1), with ω −−−→
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f n+1 = (1−ω)f n +ω
m(un) +m(un+1)

2 , with ω −−−→
τ→0

2.

In both cases, we get

f n+1 ' (1−ω)f n +ω
1
∆t

∫ tn+1

tn
m(u) dt, with ω ∈ {1, 2}.
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Over-relaxation

Based on the value of ω, we get the following behavior:

• ω = 1 =⇒ f ← m(u), (relaxation)
• ω = 2 =⇒ f ← 2m(u) − f . (over-relaxation)

We observe that:

• ω = 1 =⇒ first-order =⇒ diffusion,
• ω = 2 =⇒ second-order =⇒ oscillations.

In practice, we take ω = 2− C∆t to remain second-order accurate
but add some diffusion.

Remark: For Crank-Nicolson, we obtain:

ω =

∆t
τ

1+ ∆t
2τ

= 2− C∆t =⇒ τ =
C

4− 2C∆t∆t
2 = O(∆t2).
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Updating the kinetic variables

We go back to the kinetic equations with source term. We apply the
Crank-Nicolson time discretization:

fn+1k − fnk
∆t =

gk(un) + gk(un+1)
2 +

1
τ

(
mk(un) +mk(un+1)

2 −
fnk + fn+1k

2

)
,

where fnk , un and un+1 are known and f
n+1
k is unknown.

With ω = 2− C∆t defined above, we obtain

fn+1k = (1−ω)fnk +ωτ
gk(un) + gk(un+1)

2 +ω
mk(un) +mk(un+1)

2 .

Since τ = O(∆t2), the final update reads, up to O(∆t2):

fn+1k = (1−ω)fnk +ω
mk(un) +mk(un+1)

2 .
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Summary

To obtain an approximate solution fn+1k to

∂tfk = gk(u) +
1
τ
(mk(u) − fk),

at time tn+1 from fnk and un, we compute:

un+1 − un
∆t =

s(un) + s(un+1)
2 and fn+1k = (1−ω)fnk +ω

mk(un) +mk(un+1)
2 .

Remark: The expression gk(u) = (∇umk(u)) s(u) of the kinetic
source term has not been used: no need to compute the flux Jacobian.

Remark: Finding un+1 requires solving a potentially nonlinear system.

Next step: Propose an algorithm for the transport step ∂tfk + vk ·∇fk = 0.
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Transport step – setting up the problem

We wish to propose a numerical method to solve the equation

∂tfk + vk ·∇fk = 0,

i.e. to find fn+1k at time tn+1, knowing fnk at time tn.

For simplicity, we treat the following general transport equation2

with a constant velocity v, of unknown f :

∂tf + v ·∇f = 0.

To obtain a high-order scheme on an unstructured 3D grid, we select
the Discontinuous Galerkin (DG) framework.

2Note that we have d + 1 such equations to solve (since there are d + 1 kinetic
velocities) for m variables. These (d+ 1)×m equations are decoupled.
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Brief introduction to the Discontinuous Galerkin discretization

• M: 3D unstructured mesh
• nt: number of tetrahedra
• each tetrahedron has 10 nodes:
4 vertices, 6 edge midpoints

• all tetrahedra have straight edges

x

y

z

P0

P1

P2

P3

P4

P6

P7

P5

P9

P8

In each tetrahedron L, we define 10 basis functions (ϕL
i )i∈J0,9K.

The unknown function f is approximated as follows at time tn:

∀L ∈M, ∀x ∈ L, f (x, tn) ' f nL (x) =
9∑
i=0

f nL,iϕ
L
i (x).
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Brief introduction to the Discontinuous Galerkin discretization

With an implicit time discretization, integrating the transport
equation against the basis functions yields, for all j ∈ J0, 9K:

9∑
i=0

f n+1L,i − f nL,i
∆t

(∫
L
ϕL
i (x)ϕL

j (x)dx
)
−

9∑
i=0

f n+1L,i

(∫
L
ϕL
i (x) v ·∇ϕL

j (x)dx
)

+

9∑
i=0

f n+1L,i

[
3∑

α=0

(∫
∂Lα

ϕL
i (η)ϕ

L
j (η)dη

)
(v · nα)+

]

+

9∑
i=0

f n+1Rα,i

[
3∑

α=0

(∫
∂Lα

ϕRα
i (η)ϕL

j (η)dη
)
(v · nα)−

]
= 0.

L
Rαnα

∂Lα = ∂L ∩ ∂Rα

v
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Downwind algorithm

L R1

R2

R3

n1

n2

n3

v

v · n1 > 0:
downwind edge,
DG uses f n+1L

v · n2 < 0, v · n3 < 0:
upwind edges,

DG uses f n+1R2 and f n+1R3

In this configuration, the DG algorithm is then recast as a linear system:

(ML − ∆t DL + ∆t FL) f n+1L = ML f nL + ∆t FR2 f n+1R2 + ∆t FR3 f n+1R3 .
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Downwind algorithm

For any cell L, the DG algorithm reads:

(ML − ∆t DL + ∆t F+L ) f
n+1
L = ML f nL +

3∑
α=0

∆t F−Rα f
n+1
Rα .

• This is a 10× 10 linear system local to cell L.
• For all downwind edges, the matrix F−Rα vanishes.
• The matrix F+L is built using the upwind edges.

Consequence: If the upwind information is known, there is
no implicit coupling between neighboring cells. Hence,

this implicit scheme has the complexity of an explicit scheme.

Remark: This is only possible because v is constant.

Next step: How to implement this algorithm in parallel?
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Reformulation of the mesh as a graph
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Visualization of the parallel zones for a full torus
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Summary of the parallel algorithm

1. Mesh preprocessing:

1.1 Recast the meshM as a graph.

1.2 For k ∈ J0,dK, sort the graph associated to vk using breadth-first search:
this yields (d+ 1) sorted meshes Sk, each with nkp parallel regions (Pkp)p∈J1,nkpK.

2. For each iteration of the time loop3:

2.1 Solve the transport step on the sorted meshes:
for k ∈ J0,dK, do in parallel:
for p ∈ J1,nkpK, do:
for each cell L in the parallel region Pkp, do in parallel:
solve the m local linear systems, all sharing the same matrix

2.2 for each cell L inM, solve the relaxation-source step in parallel
(since it is local to the cell)

3In practice, we perform a palindromic Strang splitting.
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A note on the CFL number

To run numerical experiments, we have to define the time step ∆t.
In related work, we find:

1D nodal4 2D Gauss-Legendre5 2D Legendre-Gauss-Lobatto6

∆t 6 β
1
λ
h ∆t 6 γ

1
λ

h
2r + 1 ∆t 6 θ

1
λ

h
r + 1

with r the polynomial degree, λ the maximal wave speed, and

h = min
L∈M

volume (L)
surface (∂L) .

We will display results obtained with (very) large CFL numbers β.

4J. S. Hesthaven and T. Warburton, (2008)
5T. Toulorge and W. Desmet, J. Comput. Phys. (2011)
6G. Gassner and D. A. Kopriva, SIAM J. Sci. Comput. (2011)
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A note on the implementation

The parallel algorithm is implemented using the Rust language.

• It is a recent language (2010), oriented towards concision, speed and se-
curity.

• Most common bugs (memory leaks, segmentation faults, uninitialized
data, race conditions, …) are avoided at compile time.

• There is automatic shared-memory parallelization: if the serial code
works7, then the parallel code outputs the same result.

• It is as fast8 as C, C++ or Fortran.
• There is no need for a makefile and library inclusion is painless.
• There are no native scientific computing libraries, just wrappers. SIMD
support is underway, and MPI is barely supported.

The code is called KOUGLOFV9.

7and is implemented the right way…
8Gouy, Isaac. The Computer Language Benchmarks Game. Web.
9Kinetic schemes On Unstructured Grids for Large Optimized Finite Volume simulations
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Maxwell’s equations

We consider the non-dimensional Maxwell’s equations:{
∂tE−∇× H = −σE,
∂tH+∇× E = 0,

where E = (E1, E2, E3)ᵀ and H = (H1,H2,H3)ᵀ are the electric and
magnetic fields, and where σ is the electrical conductivity.

It is written under the present formalism by defining

u = (E1, E2, E3,H1,H2,H3)ᵀ and q(u,n) = (−(n× H)ᵀ, (n× E)ᵀ).

The initial and boundary conditions read, with Ω = [0, 1]3 ⊂ R3:{
u(x, 0) = uexact(x, 0), ∀x ∈ Ω,

u(x, t) = uexact(x, t), ∀x ∈ ∂Ω, ∀t 6 tend,

where uexact is an exact solution of Maxwell’s equations.
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Order of accuracy

We evaluate the order of accuracy of the scheme:

• in space with the exact solution being a low frequency wave
with small ∆t,

• in time with the exact solution being a quadratic function, for
which the space integration is exact.
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CFL-less aspects

To test the stability of the method, we introduce two meshes and
two exact solutions, plane waves with frequencies νs = 2 and νf = 5.

M1 M2 (geometry) M2 (mesh)

mesh #tetrahedra h volume of largest cell
volume of smallest cell

M1 9199 ' 2.28× 10−3 ' 4.5
M2 34280 ' 2.47× 10−4 ' 60
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CFL-less aspects: results on meshM1
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CFL-less aspects: results on meshM1

L2 error CPU (s)

Code CFL β ∆t νs = 2 νf = 5 1 thread 24 threads

gdon 0.37 0.00084 0.00032 0.00609 360.01 72.54
KOUGLOFV 0.37 0.00084 0.00046 0.00627 96.27 15.53

gdon 0.93 0.00211 0.00032 0.00610 146.81 29.19
KOUGLOFV 0.93 0.00211 0.00047 0.00657 38.63 6.52

gdon 1.85 0.00422 0.00032 0.00609 77.32 16.07
KOUGLOFV 1.85 0.00422 0.00062 0.00891 19.23 3.26

KOUGLOFV 3.70 0.00845 0.00162 0.02397 9.92 1.64
KOUGLOFV 9.25 0.02112 0.00960 0.14851 3.95 0.63
KOUGLOFV 18.50 0.04223 0.03990 0.42444 2.00 0.33
KOUGLOFV 37.00 0.08447 0.14919 0.34411 1.02 0.17
KOUGLOFV 92.50 0.21117 0.25771 0.67218 0.45 0.08
KOUGLOFV 185.00 0.42234 0.45671 0.49513 0.29 0.05
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CFL-less aspects: results on meshM2
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CFL-less aspects: results on meshM2

L2 error CPU (s)

Code CFL β ∆t νs = 2 νf = 5 1 thread 24 threads

gdon 0.37 0.00009 0.00070 0.01238 4,607.95 785.28
KOUGLOFV 0.37 0.00009 0.00103 0.01467 1,524.45 234.48

gdon 0.93 0.00023 0.00070 0.01238 2,189.76 384.79
KOUGLOFV 0.93 0.00023 0.00103 0.01467 613.44 90.84

gdon 1.85 0.00046 0.00070 0.01238 1,121.96 212.60
KOUGLOFV 1.85 0.00046 0.00103 0.01467 304.41 45.14

KOUGLOFV 3.70 0.00091 0.00103 0.01468 153.09 22.40
KOUGLOFV 9.25 0.00228 0.00104 0.01479 61.60 8.96
KOUGLOFV 18.50 0.00456 0.00115 0.01619 30.76 4.53
KOUGLOFV 37.00 0.00912 0.00210 0.02992 15.34 2.46
KOUGLOFV 92.50 0.02281 0.01107 0.16589 6.17 0.92
KOUGLOFV 185.00 0.04562 0.04509 0.40344 3.10 0.48
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Results with a source term – conductive antenna

We consider a conductive antenna in vacuum
(σ 6= 0 in the antenna, σ = 0 elsewhere).
The mesh is made of about 516k elements; its largest/smallest ratio is 28.
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x1

x3
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Results with a source term – conductive antenna, σ = 3

We first display the results with β = 20, about 11 times larger than
the classical CFL condition.
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Results with a source term – conductive antenna, σ = 3

We now compare the results with a FDTD reference solver.

CPU time for FDTD: 22 hours on 8 cores (Intel Xeon).

CPU time for KOUGLOFV: 17 minutes on 6 cores (Intel i7), with β = 7.
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Results with a source term – conductive antenna, σ = +∞
We take σ→ +∞ to simulate a PEC (perfect electric conductor).
The source term update reads:{

En+1 = µEn,
Hn+1 = Hn,

where µ =
1− σ

∆t
2

1+ σ
∆t
2

−−−−→
σ→+∞ −1.

When σ→ +∞, we get En+1 = −En: this is correct PEC behavior.

We first display the results with β = 20.

0 0.5 1
0

0.5

1

x1

x
3

−1

−0.5

0

0.5

1
u1

0 0.5 1
0

0.5

1

x2

x
3

−1

−0.5

0

0.5

1
u2

0 0.5 1
0

0.5

1

x2
x
3

−1

−0.5

0

0.5

1
u4

E1
∣∣
x2=0.5

E2
∣∣
x1=0.5

H1
∣∣
x1=0.5

36/44



Results with a source term – conductive antenna, σ = +∞
We now compare the results with a FDTD reference solver.

CPU time for FDTD: 22 hours on 8 cores (Intel Xeon).

CPU time for KOUGLOFV: 17 minutes on 6 cores (Intel i7), with β = 7.

0 0.2 0.4 0.6 0.8 1
0

1 · 10−3

2 · 10−3

x

Hx

0.5 1

−5 · 10−3

0

5 · 10−3

x

Hy

FDTD KOUGLOFV
36/44



Scalability test

Lastly, we perform a scalability test of the KOUGLOFV code, on 24
cores (Intel Xeon).

refinement it/s µs/dof/it

level elements serial parallel serial parallel scalability heap

8 1808 72.58 346.1 0.425 0.089 4.769 11.85 MB
16 9199 11.34 102.2 0.569 0.063 9.012 42.50 MB
32 56967 1.698 20.19 0.664 0.056 11.89 266.5 MB
48 175138 0.531 7.753 0.718 0.049 14.60 808.9 MB
64 386806 0.236 3.579 0.747 0.049 15.17 1.777 GB
72 544030 0.165 2.531 0.765 0.050 15.34 2.515 GB

Efficiency seems to be capped at around 60% for 24 cores…

Next step: Extend the algorithm to be able to use MPI.
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Subdomain decomposition

The relaxation-source step is already local, and therefore it is
embarrassingly parallel.

We focus on solving the transport equation on the domain Ω× (0, ∆t):{
∂tf + v ·∇f = 0 for x ∈ Ω and t ∈ (0, ∆t),
f (x, 0) = f 0(x) for x ∈ Ω.

The domain Ω is decomposed into subdomains Ωi.

We denote by:
• fi the restriction of f to Ωi;
• ni(η) the outward normal vector to ∂Ωi for η ∈ ∂Ωi;
• N(Ωi) the subdomains neighboring Ωi;
• ∂Ω−

i the upwind part of the boundary of Ωi:
∂Ω−

i =
{
η ∈ ∂Ωi | ni(η) · v < 0

}
.
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Iterative algorithm – illustration on aligned subdomains
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First iteration:
• inner values are correct,
• but boundary values come from the previous time iteration!
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Iterative algorithm – illustration on aligned subdomains
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Second iteration:
• inner values are correct,
• boundary values have been updated; the correct value is transported.
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Iterative algorithm – illustration in the generic case
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Iterative algorithm

We propose the following iterative algorithm on Ωi × (0, ∆t):
∂tf pi + v ·∇f pi = 0 for x ∈ Ωi and t ∈ (0, ∆t),
f pi (x, 0) = f 0i (x) for x ∈ Ωi,

f pi (x, t) = f p−1j (x, t) for x ∈ ∂Ω−
i ∩ ∂Ωj, ∀Ωj ∈ N(Ωi).

Main idea: Use whatever information is known:
• transport within a subdomain converges in one iteration;
• getting accurate transported quantities from a neighboring
subdomain requires at most 3 iterations: f 3i = f n+1i .

For this idea to work, we require ∆t 6 L

‖v‖ , with L the maximal
subdomain diameter.
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Iterative algorithm – numerical results
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Scalability test

We perform a scalability test on a mesh with about 900k elements,
on a server equipped with an AMD EPYC 7713 x2 (128+128 cores).

MPI nodes Threads # CPU Time (s) Efficiency

1 2 2 1315 1.00
1 8 8 346.5 0.95
1 16 16 209.9 0.79
1 32 32 132.3 0.62
1 64 64 105.9 0.39
2 32 64 75.04 0.55
4 16 64 59.06 0.70
8 8 64 56.85 0.72
16 8 128 34.28 0.60
32 8 256 25.93 0.40
64 4 256 25.22 0.41
128 2 256 23.92 0.43
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Conclusion and perspectives

We have presented a numerical method that:

• can be applied to any system of balance laws,
• is stable without a CFL condition,
• has the complexity of an explicit scheme,
• is parallelized in both shared- and distributed-memory contexts.

Perspectives include work on boundary conditions, as well as using
the method for other applications.

Related publication: P. Gerhard, Ph. Helluy, and V. Michel-Dansac.
“Unconditionally stable and parallel Discontinuous Galerkin solver.”
Comput. Math. Appl. 112 (2022), pp. 116–137
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Thank you for your attention!
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