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Motivation
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G. Davillxc/ar;‘ (2011).
o Jet noise dominant during
take off.
@ Becomes limiting for
certifications.

o Noise comes from the flow.

Sao Paulo airport.
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Motivation: the jet noise problem Wavepackets

Jordan & Colonius (2013)
Cavalieri et al. (2012,2013)

Where does the noise come from? Tinney et al. (2008)
@ Turbulent stochastic eddies?

@ Or something more organised?

e Wavepackets in pressure/velocity field.
e PV

Tinney & Jordan 2008; Co-azial “ oF
transonic heated jet Re =5 x 106, Near-field pressure.

e Acoustic directivity as extended source (low azimuthal angles).
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Motivation: the jet noise problem Wavepackets

Jordan & Colonius (2013)
Cavalieri et al. (2012,2013)

Where does the noise come from? Tinney et al. (2008)
@ Turbulent stochastic eddies?

o Or something more organised?

™y

e Wavepackets in pressure/velocity field.

Tinney & Jordan 2008; Co-azial “ oF
transonic heated jet Re =5 x 106, Near-field pressure.

e Acoustic directivity as extended source (low azimuthal angles).
Source: likely a wavepacket shape.
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Motivation: the jet noise problem Linear models

Jordan € Colonius (2013)
Cavalieri et al. (2013)
Sinha et al. (2014)

Bagqui et al. (2015)

Wavepackets: Propagated linear instability waves

Experimental subsonic jet mean flow.

2.0 T T T T T T T T
1.5
r/D 101!
0.5 =
LN I 1 1 1 I
1 3 4 5 6 7 8 9 10
Locally—paraﬁlcl D
Stability
4 .
2
E 0 - .-l- e e s o .
2
- KelvinHelholtz modeo

-2 0 2 4 6 s 10



Motivation cal methods Stochastic model Results

Linear models

Motivation: the jet noise problem Linear models

Jordan & Colonius (2013)
Cavalieri et al. (2013)
Sinha et al. (2014)

Bagqui et al. (2015)

Wavepackets: Propagated linear instability waves

Experimental subsonic jet mean flow. Centerline |u|?:
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Motivation: the jet noise problem The missing piece

What is missing?
o Propagation condition: ¢ = ﬁ, ky = %22 — k2
= supersonic axial phase velocity.
o Wavepacket envelop shape allows propagation
(due to convolution), but not enough.

e Intensification by turbulence. A
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Radiation

From Jordan € Colonius (2013)
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Motivation: the jet noise problem The missing piece

Cavalieri et al. (2011, 2013)
. . . . Baqui et al. (2015)
Several representations for intensifying phenomena
o Non-linear term.
o Jittering wavepacket.

e Coherence (2-points statistics).
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Motivation
The mis

Motivation: the jet noise problem The missing piece

Cavalieri et al. (2011, 2013)
Baqui et al. (2015)

Several representations for intensifying phenomena

o Non-linear term.
o Jittering wavepacket.
e Coherence (2-points statistics).

Coherence-matched wavepackets: right acoustic emission
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From Baqui et al.(2015)
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Objective

Motivation: the jet noise problem Objective

Objective:

Simplified model for wavepackets (or coherent structures)
evolving within turbulent flows.

o Model-based.
@ Predict coherence decay.

@ Stochastic modelling under location uncertainty.
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Objective

Outline

@ Motivation: the jet noise problem

© Classical methods

© Stochastic model under location uncertainty

@ Results
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Overview
Classical methods Overview

Lumley (1967)

Herbert (1997)

McKeon et al. (2010)
Schmid (2010)

Towne et al. (2015,2018)

Extract from data:
e Proper Orthogonal Decomposition (POD).
e Dynamic Mode Decomposition (DMD), and variants. ..

e Spectral Proper Orthogonal Decomposition (SPOD).

Models:
o Linear stability.
e PSE, OWNS.

@ Resolvent analysis.
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Classical methods SPOD

Turbulent signal:

g
N
g
i :
%0 01 03 o 0 10
: : 1(s) i Smt
(From Pope 2000). (From Jimenez 2013).

Cij(z,x',0,7) = (ui(x, 0y, t)uj(z’, 00 + 6,t + 7)) x = (z,7r)"

Fourier transform in (6,1t)
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SPOD

Classical methods SPOD

Some quantities:
e Cross power spectral density tensor (CSD): Sj3, ., (x, x').
e Power spectral density (PSD): S} (x, x).
|S%,w(m1m/)|2
Sﬁ};yw(m,w)S%,w(w’,m/)
~v = 1: Perfectly syncronised.
v = 0: Decorrelated.

o Coherence: 77, ,; (@, x') =

0 50 100 150 200 250 300
X

Mizing layer Re = 300, Spanwise vorticity &.
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Classical methods SPOD

Towne et al. (2018)

Spectral proper orthogonal decomposition (SPOD):

SPOD __ SPOD
Sm,wW':I)k:,m,w - )‘k,m,w(I)k,m,w’

Interest:

Perfectly coherent modes.

°
@ Decorrelated from each other.
@ Orthonormal bases.

o

Sorted by energy content.
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SPOD

Classical methods SPOD

Towne et al. (2018)

Spectral proper orthogonal decomposition (SPOD):

SPOD __ SPOD
Sm,wW':I)k:,m,w - )‘k,m,w(I)k,m,w’

Interest:

Perfectly coherent modes.

°
@ Decorrelated from each other.
@ Orthonormal bases.

o

Sorted by energy content.

Low order representation:
SPOD *,SPOD /
Sm, Z q)k m w )‘k m,w = kom,w (ZB )

And then access to 2.
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Classical methods Resolvent analysis

Navier-Stokes equations:

ou 1
a‘l‘(’U,V)U——VP‘FE

V-.u=0.

Au
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Resolvent analysis

Classical methods Resolvent analysis

Navier-Stokes equations:

ou 1
el : - —A
5 +(u-V)u Vp+Re u
V.u=0.
Linearisation: Around the mean flow @ = (U(y),0,0)7.
u=1u-+u
o’

1
—Au = —(u - V)

E+(ﬁ-V)u'+(u'-V)ﬁ+Vp'—Re

V-u =0.
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Resolvent analysis

Classical methods Resolvent analysis

Navier-Stokes equations:

ou 1
ou . - —A
5 +(u-V)u Vp+Re u
V-eu=0.
Linearisation: Around the mean flow @ = (U(y),0,0)7.
u=u+u
O +(u-V)u' + (v - V)u+ Vp' — LAu' =—(u - V)u
ot Re
V-u' =0.

Fourier transform:

1 & :
u(z,7,0,t) = — Z/ Wy (T,7) ei(—wtt2mmb) g,

27 oo
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Resolvent analysis

Classical methods

Schmid € Henningson (2001)
McKeon € Sharma (2010,2013)
Towne et al. (2020)

Morra et al. (2019,2020)

Non-linearity as an “external forcing” Nogueira et al. (2020)
Martint et al. (2020)

Navier-Stokes in the frequency-wavenumber domain:
(Aa7m7w - ZWE) qm,w = Nﬁ,m,w(q/) = .7:(—u/ ° Vu’)

Ng.ul,ml (ql>

= Qo my

G,w1,m1
Niwymy (@) ,K1—| Gy my

qWN,MN

[F1] (@' V)4 [ Convective | 4
FT Convective ,E‘T
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Resolvent analysis

Classical methods

Schmid € Henningson (2001)
McKeon € Sharma (2010,2013)
Towne et al. (2020)

Morra et al. (2019,2020)

1i : 13 ] 2 Nogueira et al. (2020)
Non-linearity as an “external forcing Martini et al. (2020)

Navier-Stokes in the frequency-wavenumber domain:
(Aﬂ,m,w - ZWE) qm,w = Nﬁ,m,w(q/) = .7:(—u/ ° Vu’)

~~ ™

Nawym (@) ] Qoo

W1 ,m
D1 'All possible forcings All possible response

Nawymn (@) 7= onmn
quwg\n"w

[F1] (@' V)4 [ Convective | 4
FT Convective ,E‘T

Identify relevant non-linearities.
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Resolvent analysis

Classical methods

Schmid € Henningson (2001)

McKeon € Sharma (2010,2013)

Towne et al. (2020)

N 1 t « ¢ 1 f . ” Mu]'(;u et al. (2011922223j
- ogueira et al.

on-lnearity as aln external 1orcing Martini et al. (2020)

Navier-Stokes in the frequency-wavenumber domain:
(Aﬂ,m,w - ZWE) qm,w = Nﬁ,m,w(q/) = .7:(—u/ ° Vu’)
~~

Nawym (@) ] Qoo
q,w1,my

NL?WNVWN(QI) ,#‘ ﬁw,nw
quwg\n"w

All possible response

'All possible forcings

Physical

Physical

responses

forcings

/
Most amplified forcings Most amplified responses

@ Resolvent analysis.

'V)q'

—(q Jonvective
EFT:' Convective

Identify relevant non-linearities.
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Resolvent analysis

Classical methods Resolvent analysis

Linearised problem with external forcing:

Hmw = H(Aamw — iwE) ' B fw.

SVD
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Resolvent analysis 15

Classical methods Resolvent analysis

Linearised problem with external forcing:

Hdm,w - H(Aﬁ,m,w - iWE)_lB fm,w~

SVD

SVD to maximise Rayleigh quotient:

~ 2
ol _ | (e = 0E)'B) fns |
A TAE A
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Resolvent analysis 15

Classical methods Resolvent analysis

Linearised problem with external forcing:

Hdm,w = H(Aﬁ,m,w - iWE)_lB fm,w~

SVD

SVD to maximise Rayleigh quotient:

N 2
(Hamol? || (H(Asme —iwB) " B) fu
e N Fmel? FE

Most amplified harmonic forcing/response modes:
H(Agmeo —iwE) 'B=UXV*

H(Agmu — iwE) BV, = 0,U;
with U = (Un,...,Un), V = (Vi,...,Vn) and ¥ = diag(o1,...,0n).
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Resolvent analysis

Classical methods Resolvent analysis

Towne et al. (2017)
Cavalieri et al. (2019)

Link with SPOD:

If (w-V)u (i.e. fin the data) is a Gaussian white noise, then
SPOD and resolvent modes match.

Proof:
R = H(Agmuw — iwE) B

S = B (Gmwlin) = RE (frsoFrnw) R
~—_——
I

Then, eigenfunctions of S, ., (SPOD) are resolvent modes.
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Adding eddy viscosity
Classical methods Adding eddy viscosity

Reynolds € Hussain (1972)
: s Morra et al. (2019)
Eddy VlSCOSlty Symon et al. (2020)

Triple decomposition

u(z,t) = u(x) +u(z,t)+u'(x, )
N—— N N —

average  coherent  turbulent

Ensemble /phase averaging (u) = u + u.
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Adding eddy viscosity
Classical methods Adding eddy viscosity

Reynolds € Hussain (1972)
3 3 Morra et al. (2019)
Eddy VlSCOSlty Symon et al. (2020)

Triple decomposition

u(z,t) = u(x) +u(z,t)+u'(x, )
N—— N N —

average  coherent  turbulent

Ensemble /phase averaging (u) = u + u.
We obtain generalised Reynolds stresses

f(m_(a-vm)wf(m— (“"V)“/)

f ~V-(riVau)
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Adding eddy viscosity
Classical methods Adding eddy viscosity

Reynolds € Hussain (1972)
3 3 Morra et al. (2019)
Eddy VlSCOSlty Symon et al. (2020)

Triple decomposition

u(z,t) = u(x) +u(z,t)+u'(x, )
N—— N N —

average  coherent  turbulent

Ensemble /phase averaging (u) = u + u.
We obtain generalised Reynolds stresses

f(m_(a-vm)wf(m— (“"V)“/)

f ~V-(riVau)

@ Models energy transfers from scales with high production.

o y(w=0)# 1r(w#0).

o Purely dissipative = forbid backscatter.



Stochastic model

Main idea

Motiv
Main

Stochastic model

Decomposition: u(z,t) = u(x) +u(z,t) +u'(x,t)
—— N N —

average  coherent  turbulent
u
w
Stochastic
/ ~
u - u
Small

G. Tissot, A. Cavalieri, & E. Mémin Input-output analysis of the stochastic Navier Stokes

equations: Application to turbulent channel flow Phys. Rev. Fluids (2023)
G. Tissot, A. Cavalieri, & E. Mémin Stochastic linear modes in a turbulent channel flow, J.

Fluid Mech. (2021)
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Modelling under location uncertainty

Stochastic model Modelling under location uncertainty

Particle displacement

t t

u(x, t)dt + /adBt ,

to

X (x,t) :X(w,to)—i-/

to

Brownian motion

Differential form

dX(xz,t) = wu(x,t)dt + odB;
~——

Resolved, smooth  Unresolved, random

with

o-dBt:/6(m,m’,t)dBt(:c’)da:’.
Q
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Modelling under location uncertainty
Stochastic model Modelling under location uncertainty

Kunita (1997)
Mémin (2014)
Resseguier et al. (2017)

Stochastic transport operator

V- (aVl)dt,

dif +V - (Qu*)dt + V - (lodB;) =
with the drift velocity
N 1
U :u—iv-a—i—a(v-a’).

and a;j(z,t) = [, 0" (x,y,t)o" (z,y,t)dy = oo™
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Modelling under location uncertainty

Stochastic model

Kunita (1997)

Mémin (2014)

Resseguier et al. (2017)

. . . Chandramouli et al. (2018)
Stochastic Navier-Stokes equations Li et al. (2023)

diu+ (v - V)udt + (odB; - V)u = =V (p dt + dp;)

1 1 1
+ 5oV (V) dt 4 5V - (aVu) dt 4 -V - (VodBy)

Veu*=0; V-0=0,
*

u :u—iv-a.

Applications:
o Large-eddy simulations.

o Geophysical flow simulations.
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Modelling under location uncertainty 22/40

Stochastic model

Linearisation u = u +u ; v’ ~ odB;
dia + (w* - V)udt + (u-V)adt + (6dB; - V)u+ (6dB; - V) u
= =V (prdt + dp:)
+
Vi —

1 - 1 1
EV - (Vau) dt + §V - (@Vu) dt + EV - (VodBy)
0; V-o=0
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Modelling under location uncertainty

Stochastic model

Linearisation u = u +u ; v’ ~ odB;
1 - 1 1
+ EV - (Vau) dt + §V - (@Vu) dt + EV - (VodBy)
V-u=0; V-0=0
Ansatz
U, 1, 0,1) = G o, r)e!CTITT 00
a_dBt —_ dEm,w(x, r>€i(2ﬂ'm07wt72j uJ:CJt)

with odBy =3, i ®pm,;(2, r)e'Cmmidc;
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Modelling under location uncertainty

Stochastic model

Random part

D il wdCy = F (0dBy - Vai) + Va;d(;,,
J

Predicts the random phase... but not used here.
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Modelling under location uncertainty

Stochastic model

Stochastic linear model

. ou . 0-
— Daa(+) or ?/“( ) 0 %z T
Aadv () + or Dyr(+) 0 r "E'm,w
0 Aadv() + 3V = D2z () imy | | Dmw
1 Or- imLl 0 Pm,w
r Or T

ouU L
= Emw)r B+ AV (VEmw)e)
— (€)Y + ,Wv (V(Emw)y)
AV (Vo))

with A4, (1) = —iw + Udg + V]gr
and D(+) = 2V - (V(-)) + 1V (aV (-)).
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Modelling under location uncertainty

Stochastic model

Stochastic linear model

In a compact form

(AS'LM - ZLUE) qu,w = BZLMfm.w

w,m,w

Ensemble = Cross spectral density matrix and eigenfunctions.
Comparable to resolvent and SPOD.
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Modelling under location uncertainty

Stochastic model

Stochastic linear model

In a compact form

(AS'LM - ZLUE) qu,w = BZLMfm.w

w,m,w

In practice: solved rewritten as a SVD problem.
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Modelling under location uncertainty

Stochastic model

Model definition

suboptimals a
Resolvent — BSMM
®;7, o 1
J SVD —>
U @SLM SLM
m,w m,w
LM .
RANS — ASL mw — WE
U, vr

Figure: Schematic representation of the SLM procedure.

émw — Zo_res }Ces le
N(o 1)
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Turbulent jet

Results Turbulent jet

Mean flow from RANS: M = 0.4, Re = 450 000
U:

2 q
15 2
6
[
05 §
0 t T
: 2 0.015
- 0.01
L5 0.005
0
=1 —0.005
05 —0.01_
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Resolvent analysis

Results

Resolvent analysis: v, St = 0.7, focus on m =0
Mode 0:

FEERERERERR R

t]

06

04

00
04

. bt LT LT LT TN NN AN AANANAN NN e
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Results Stochastic model
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Results Stochastic model

Mode 0: v, St =0.7
SPOD:

a1l I ITN

Resolvent:

FERRRR AR

Resolvent with eddy viscosity:

i 1111 YT

Stochastic model:

it d )5
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Results Stochastic model

Mode 1: v, St =0.7
SPOD:

ki 11 1LY

Resolvent:

etz T TTIANNY

Resolvent with eddy viscosity:

LI SEEV T T TV LT

Stochastic model:
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Results Stochastic model

Mode 4: v, St =0.7
SPOD:

M e

Resolvent:

Resolvent with eddy viscosity:

spgeesgees

Stochastic model:

L TR T,



Results

Results

TKE:

Stochastic

St

Coherence, v, © = 2:

— LES 1.0
107" resolvent
vr-resolvent 08
1024 — sLM
S 06
2 10734 o
&
10744 04
104 0.2
)
10-8 r T T — : : ] VA= A
0 5 10 15 20 2% 0 5 10 15 20 25
Coherence, v, T = 5: Coherence, v, z = 8:
1.0 — LES 10 — LES
resolvent resolvent
084 vy-resolvent 08 vp-resolvent
— sLM — sLM
0.64 0.6
0.4 04
0.2 A J\ 02 M
: ‘ ) =l : NVlw.
0 5 10 15 20 2% 0 5 10 15 20 2%

model

=0.7
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stic model

Results Stochastic model

Coherence, v, x =5

St =0.2: St =0.4:
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Acoustic predictions

Results Acoustic predictions

Reba et al. (2010)
Baqui et al. (2015)

Acoustic propagation:
@ Pressure CSD at a Kirchhoff surface (cylindrical r = 1.3D),
Near field incompressible solution.

@ Coherence matching on 1-mode wavepacket envelop.
o Fourier transform in z.
o Green’s functions (Hankel functions) propagation r = 10D.

o Inverse Fourier transform — CSD, then SPL.

Caveats: Limited validity range (M = 0.4, domain size).
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Acoustic predictions

Results Acoustic predictions
St =0.7

Pressure Kirchhoff surface: real(SH ., (z,r = 1.3,2',r = 1.3))

SPOD: Resolvent: Stochastic:
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Acoustic predictions

Results Acoustic predictions

St=0.7

Pressure Kirchhoff surface: |S’I7Z)7w(/~c,r = 1.3,k ,r=13)?
SPOD: Resolvent: Stochastlc
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Acoustic predictions

Results Acoustic predictions

St=0.7

Pressure Kirchhoff surface: viv,(x,r = 1.3,2',7 = 1.3)

Resolvent: Stochastic:
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Acoustic predictions

Results Acoustic predictions
St =0.7

Pressure propagated: at r = 10D, \p!fmw

100
80
60
n
2
T 40
20 SPOD —
resolvent ——
vr-resolvent
0 SLM —

30 40 50 60 70 80 90
0



ic model 5 Conclusion

Conclusion

Summary:
o Wavepacket submitted to stochastic transport.
e Stochastic noise, drift velocity, stochastic diffusion.
o Coherence decay prediction.
o Encouraging for subsonic turbulent jets acoustics.

@ Perspectives to extend to compressible framework.
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Premiminaries

Preliminaries in stochastic calculus: Naive approach

dq
2 _ 4
ST NS

Stochastic variable



Premiminaries

Premiminaries

Do not divide by dt!

...see just later why.
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Premiminaries

t4-dt

Naive approach: dg = [, dg = q(t + dt) — q(t)

dg = Aqdt + fdt
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Premiminaries

t4-dt

Naive approach: dg = [, dg = q(t + dt) — q(t)

dg = Aqdt + fdt

d
dEf:E</tt+tq-fds>
t+dt s
=E ds’ ) - fd
VEDED
— 5 (l517a)

dEf 71 9
Tl 2E (II£]1%) d



Premiminaries

Premiminaries

Hddg = q(t + dt) — q(t)

dg = Aqdt + fdt dq = Aqdt + fdB,

d
dEf:E</tt+tq-fds>
t+dt s
=E ds’ ) - fd
VEDED
— 5 (l517a)

dEf 71 9
Tl 2E (II£]1%) d

Naive approach: dg =
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Premiminaries

Hddg = q(t + dt) — q(t)

dg = Aqdt + fdt dq = Aqdt + fdB,

t-+dt t+dt
dEf:E(/t q-fds) dEf:E(/t q-deS>
([ () g ([ ([ o)1)

_ 1 2 142 _ 1 2
— 5 (l517a) SHERD

dey _ 1 2 dey _ 1 2
L le (A1) L _ e (1#1?)

Naive approach: dg =

Use Brownian motions.
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Premiminaries

Brownian motion:

o
=
o P! s
"] E(Bt) =0
° (By,By); =1t
o % o000
"] d<Bt, Bt)t =dt
nnnnn

004 obe  ooe 010 00z o0s 008
€

Covariation: N

X, Yy =1l Xy, — X, Y, — Y,
< 9 >t d;glozo( t; tzfl)( t; tzfl)
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Ito Calculus:
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Premiminaries

Ito Calculus:

dXt =ux dt +o0x dBt
dY; = uy dt + oy dB;
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Ito Calculus:

dXt =ux dt +o0x dBt
dY; = uy dt + oy dB;
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Premiminaries

Ito Calculus:

dXt =ux dt + ox dBt
dY; = uy dt + oy dB;

with

A(X,Y), = d < /0 o (5)dB.. /O t ay(s)st>t — ox(t)o, (t)dt

Do not forget covariations.
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