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1. The triumph of black boxes in the 2000s

• Model factories
• Systems that automatically generate predictive models with little or no 

human intervention. e.g.: simultaneous sales forecasts of thousands of items
• 2010 KMF : Kxen Modeling Factory for automated risk score generation

• Predicting without understanding
• Uninterpretable models can give good forecasts
• Better models are sometimes obtained by deliberately avoiding to reproduce 

the true mechanisms (Vapnik, 1982 according to L.Bottou).

A French-American startup founded in 1998, acquired by 
SAP in 2013, based on an original idea by Léon Bottou using 
the Vapnik-Cervonenkis theory on structural risk 
minimization.
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Is the "why" so important?

• In everyday life, we trust many processes that we do not 
understand: cars, television, smartphones, weather 
forecasts. No matter if black boxes are used. 

• But when certain decisions have implications on our lives: 
health, employment, money, etc., the right to an 
explanation is necessary.
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2. Societal implications
• A denunciation literature motivated by unethical applications of 

Machine Learning in massive automatic decisions on 
individuals: e.g. loan allocation, predictive justice, 
recruitment....

2014 2016 2018
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• The increasing use of algorithms to make eligibility decisions must be 
carefully monitored for potential discriminatory outcomes for 
disadvantaged groups, even absent discriminatory intent. 
Executive Office of US President: Big Data: Seizing Opportunities and Preserving Values,   

https://www.hsdl.org/?view&did=752636 (2014)

• Through 2022, 85 percent of AI projects will deliver erroneous 
outcomes due to bias in data, algorithms or the teams responsible for 
managing them. 

https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-
planning-to-deploy-artificial-intelligence
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The right to an explanation

• EU High Level Expert Group 
on AI (2019) 

• Respect for human autonomy
• Prevention of any harm
• Fairness
• Explainability

• OECD Council Recommendation 
on AI (2019)

• Inclusive growth, sustainable 
development and well-being

• Human-centred values and 
fairness

• Transparency and explainability
• Robustness, security and safety
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Codes, regulations and ethics statements
• EU General Data Protection Regulation (2016) https://gdprinfo.eu
• Montréal Declaration for a Responsible Development of Artificial Intelligence (2017) 

https://www.montrealdeclaration-responsibleai.com/
• NYC Local Law on Automatic Decision Systems (2018) 

https://legistar.council.nyc.gov/View.ashx?M=F&ID=5828157&GUID=4A07389A-0FE9-432B-8130-
D9E1821C82C4

• OECD Recommendation of the Council on Artificial Intelligence (2019), 
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449

• EU Ethics guidelines for trustworthy AI (2019) https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

• Council of Europe. Towards regulation of AI systems (2020) https://www.coe.int/en/web/artificial-
intelligence/cai

• UNESCO Recommendation on the ethics of artificial intelligence (2021)
https://en.unesco.org/artificial-intelligence/ethics

• EU Digital Services Act, Digital Market Act (2022) https://digital-
strategy.ec.europa.eu/en/policies/digital-services-act-package
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Expected properties of the algorithms

• Transparency: on the purpose, structure and underlying actions of 
the algorithms used

• Responsability: companies should be held accountable for the results 
of their programmed algorithms.

• Auditability: Describes the ability to evaluate algorithms, models, and 
datasets; to analyze the operation, results, and effects, even 
unexpected, of AI systems.

• Fairness: if its results are independent of variables considered 
sensitive, such as characteristics of individuals that should not be 
correlated with the outcome (gender, ethnicity, sexual orientation, 
disability, etc.) 
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3. Interpretability and explainability of 
models
• Terms often used interchangeably
• Interpretability

• Refers to simple and transparent algorithms: logical 
models (trees, ...), linear (sparse, ...), knn. 

• Explainability
• the ability to explain or present in terms understandable 

to a human being
• Generally post-hoc (open the black box)

• Local or global 
• Specific or agnostic 2022
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3.1 Measures of variables importance

3.1.1 Specific methods
• It is often believed that simple models, such as linear or logistic 

regression, are easily interpreted.
• Generally untrue!  
• Except in the case of orthogonal designs, the parameter values hardly 

reflect the importance of the variables.
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• More than 14 methods to 
quantify the importance of 
variables in linear 
models!(Grömping, 2015, Wallard, 
2015)

R package relaimpo
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3.1.2 Agnostic methods

permutation variable importance (Breiman, 2001)

• Introduced for random forests as the increase of the prediction 
error of the model when shuffling the predictor values.

• Easy to understand approach, taking into account the interactions
• Must be repeated and averaged
• Importances are not additive
• Can lead to physically impossible unit pairs and outliers.
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Shapley value
Inspired by game theory( Lundberg & 
Lee, 2017)

• Nice mathematical properties
• Including additivity and uniqueness 

under certain conditions.
• Allows to decompose an individual 

prediction (local values)
• Global importance of a predictor: 

average of the local values on all n 
units

Python libraries
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3.2 Surrogate models

“A surrogate model is an interpretable model that is trained to 
approximate the predictions of a black box model” (Molnar, 2020)
• Can be global or local, agnostic or specific.
• Agnostic means that it can be applied to any learning model.
• A surrogate model tries to approximate the black box model, not to fit 

the data.
• Trees, linear models are the preferred alternative models.
• A popular approach :  LIME (Local Interpretable Model-agnostic

Explanations) 
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4. New requirements: interpretable and 
causal models
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Cynthia Rudin
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Interpretability and causality

• Measuring the importance of a variable does not answer this 
question: what would be the answer if one or more predictors 
were changed intentionally or unintentionally? 

• It is often absurd to measure the effect of a variable "all other things 
being equal "..

• Changing xj may change the values of other predictors if they are 
causally related.
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• Regression, ML models are not causal, but are often used 
as if they were, resulting in many disappointments.. 

• Seeing is not doing (Pearl & Mackenzie, 2018)

• Confusion between correlation and causation
• Difficult to infer causality from observational data. 

• Propensity score matching (Rosenbaum et Rubin, 1983)
• Bayesian network learning

• Need for experiments

( | ) ( | ( ))P Y X x P Y do X x= ≠ =
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5. Fairness: a statistical problem?

• Motivated by discriminatory treatment of groups of people: 
gender, race etc. .

• Binary classification
• Decisions on remand and risk of recidivism (Wang et al. 2020)
• Hiring

• An avalanche of articles and conferences over the past 4 
years

• FairWare 2018 https://fairware.cs.umass.edu/
• ACM Conference on Fairness, Accountability, and Transparency 

(ACM FAccT) since 2018 https://facctconference.org/
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• Set of descriptors V=(A,X) where A are sensitive variables (protected 
groups); Y binary outcome to predict, D decision or predicted 
outcome D=f(V)

• In the U.S., sensitive categories are legally protected groups. Federal law 
makes it illegal to discriminate on the basis of: race, color, national origin, 
religion, sex, disability, age (40+), citizenship status, genetic information.

• In California: 18 protected groups 
https://www.senate.ca.gov/content/protected-classes
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5.1 Measuring fairness

Verma, Rubin 2018

More than 20 measures of algorithmic 
fairness!
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New tools (open source)

• What If Tool (Google)

• AI Fairness 360 (IBM)

• toolkit

• Aequitas

more than 70 metrics

“Adds an ethics checklist to your data science projects”

Center for Data Science and Public Policy at University of 
Chicago
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Measuring fairness without considering the outcome Y

• Equality of decision measures
• Statistical parity or group equity if D is independent of A :  D⊥A
• Conditional demographic parity : D⊥A knowing V

• Metric fairness or individual fairness: two individuals who 
are close according to V should be treated similarly. 

• Metric fairness implies unawareness if the metric considers only 
non-sensitive variables
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• Fairness through unawareness : 
D⊥A given X (non protected attributes) . The model 
should not explicitly use protected attributes A. 
Unawareness implies that people with the same x will
be treated similarly.

• A naive approach might require that the algorithm 
should ignore all protected attributes such as race, 
color, religion, gender, disability, or family status. 
However, this idea of “fairness through unawareness” 
is ineffective due to the existence of redundant 
encodings, ways of predicting protected attributes 
from other features (Hardt et al., 2016)
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Measuring fairness by considering the outcome Y

• Equal precision or demographic parity

• For example, we might want a medical diagnostic tool to be 
equally accurate for people of any race or gender. (Mitchell et al. 
2021) 

• Loan assessment: people across groups have the same chance of 
getting the loan 

( ) ( )1| 1| 'P Y A a P Y A a= = = = =
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Considering both decision D and outcome Y
Confusion Matrix

Mitchell et al., 2021
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Conditioning according to the outcome

1. Equality of false positive rates (and therefore true negative rates)

2. Equality of true positive rates (and therefore false negative rates) equality of 
chances 
These two pairs reflect a fairness notion that people with the same outcome should 
be treated the same, regardless of sensitive group membership. (Mitchell et al.)
• 3. Both: separation or equalization of opportunities

Ex. Among all people who will not default, they have the same chance of getting the loan. Among 
people who will default, they have the same chance of being rejected. 

( ) ( )|
 given 0
1| 0, 1 0, 'P

A
D Y A a P D Y

D Y
A a= = = = = =

⊥ =

=

 given 1D A Y⊥ =
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Conditioning according to the decision (decision maker's 
point of view)

1. Equality of predicted value

2. Equality of positive predictive value (and therefore equality of false 
discovery rate) is predictive parity : Y ⊥ A given D=1
• Ex. Among all people who are given a loan, across groups there is the same 

proportion of people who will not default (equal chance of success given 
acceptance). 

3. Both: sufficiency, which means that people who underwent the same 
decision would have had similar outcomes, regardless of the group.

( ) ( )|
 given 1
0 | 1, 0 1, 'P

A
Y D A a P Y D

Y D
A a= = = = = =

⊥ =

=
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5.2 Impossibility theorems

• The above definitions are generally not compatible mathematically or 
morally. For example, separation and sufficiency cannot occur 
simultaneously. 

• Group equity and individual equity are generally incompatible: 
• Applied to the case of college admissions, for example, group equity would 

require that admission rates be equal for protected attributes (gender, etc.), 
while individual equity would require that each person be assessed 
independently of gender.  (Bertail et al. 2019)
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COMPAS (Correctional Offender Management Profiling for 
Alternative Sanctions) and the controversy with ProPublica

• ProPublica: COMPAS fails to meet equal false positive rates by race: 
Among defendants who were not rearrested, black defendants were twice 
as likely to be misclassified as high risk. They described the tool as biased 
against blacks

• According to COMPAS, they meet equal positive predictive values: among 
so-called high-risk individuals, the proportion of defendants who were 
rearrested is approximately the same, regardless of race.

• Both definitions of fairness can only be satisfied when (a) the recidivism 
rate and score distribution are the same for all racial groups or (b) some 
groups are not affected (e.g., whites are never rearrested).

• The definitions of equity defended by the different sides of the debate 
cannot be achieved simultaneously. (Mitchell et al., 2021)
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5.3 Operational issues

• The operational character of these measures is also problematic, not 
only because the outcome will often not be observable until well 
after the decision, but especially because of a counterfactual problem 
since in some cases the decision prohibits observation: we will never 
know whether a refused loan would have been repaid.  

• In other cases, such as the selection of candidates for a job, the 
variable Y that would consist in determining whether the recruited 
candidate does the job well is not even observable. We don't know 
the ground truth and the algorithms only automate previous 
processes.
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5.4 The "biases" of algorithms

• In most cases, algorithms 
simply reproduce the biases of 
learning data and human 
decisions.

• Statistical bias
• Non-representative sample
• Missing data and selection bias 

(e.g., loan applications)
• Traditional remedies: 

reweighting

Srinivasan, R., & Chander, A. (2021). 
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• Omitted variable bias
• In the absence of a proxy, the omission of an important predictor in a model 

usually leads to erroneous results and is difficult to detect. 
• The omission of a variable can lead to an inversion of an association in the 

whole population compared to sub-populations
• Simpson's paradox if the omitted variable is categorical, Berkson's or Lord's if the variable 

is continuous.
• Measurement and technological biases: facial recognition fails to recognize 

people of color as accurately as it does white people.

• Historical biases, stereotypes and societal, cultural and cognitive 
prejudices, ... 

• Crime rates reflect unequal social structures and also inequalities in judgments
• Data that are representative but reproduce inequalities (women's wages).

36WorkshopCnamMay2024



6. Conclusion and perspectives
• Transparency and causality do not guarantee fairness
• No single measure of fairness
• Algorithm biases are often reproductions of previous biases
• Algorithmic equity must be placed in a more general framework of 

philosophy and political economy.
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