
FEMCA: A flexible clustering
algorithm for noisy data

Frédéric Pascal

Joint work with V. Roizman & M. Jonckheere
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Motivation



Motivation

Group data points into clusters to understand the structure of the data.

similar points to be in the same cluster,

really different points to be in different clusters, and

well separated clusters.

Image segmentation Functions/Time-series

Bouveyron et al. (2007)
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Some challenges for clustering

Heterogeneous datasets

Datasets with outliers/noise.

Heavy tails distributions.

Different scales/distributions.

Continuous and discrete data.

Lots of data (n�)

High computational cost.

Needs of parallelization / batch versions.

High dimensional context (m�)

ill-posed problems.

Data on manifolds.

⇒ Regularization/penalization, dimensionality reduction
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Some challenges for clustering

Focus here on:

Heterogeneous datasets

Datasets with outliers/noise.

Different scales/distributions.

We address “not too high dimensions” regimes (say 30-100).

Reference paper: [Roizman et al., 2023] Roizman, V., Jonckheere, M.,

& Pascal, F. (2023). A flexible EM-like clustering algorithm for noisy

data. IEEE Transactions on Pattern Analysis and Machine Intelligence.
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State of the art



K-means

Given {xi}ni=1, find Ĉ = {C1, ...,CK} with µk = 1
#(Ck )

∑
x∈Ck

x such that

Ĉ = argmin
C={C1,...,CK}

K∑
k=1

∑
x∈Ck

‖x− µk‖2
2

Plain optimization problem.

Simple idea. 3

Very fast. 3

Works well only when: 7

• round-shaped clusters,

• with similar variance, and

• well-separated.
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Gaussian Mixture Model (GMM)

We model data as a mixture of Gaussian distributions N (µk ,Mk):

f (x) =
K∑

k=1

πk fk(x),

with πk the proportion of cluster k and fk the normal p.d.f.

fk(x) =
1

(2π)m/2|Mk |1/2
exp

[
−

(x− µk)TM−1
k (x− µk)

2

]
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Expectation-Maximization (EM) algorithm

Statistical algorithm to estimate parameters based on a likelihood.

In the GMM case, we would need the labels of the data points to esti-

mate the parameters. Labels → Latent variables

E-STEP

Computation of the membership a

posteriori probabilities

pik = P(Zi = k|Xi = xi ) =
πk fk(xi )
K∑
j=1

πj fj(xi )

with fk the Gaussian p.d.f.

M-STEP

Estimation of the parameters

π̂k =
1

n

n∑
i=1

pik

µ̂k =
1

nπ̂k

n∑
i=1

pikxi

M̂k =
1

nπ̂k

n∑
i=1

pik(xi − µ̂k)(xi − µ̂k)T
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What happens to GMM when the data has some noise or non

Gaussian data?

The GMM has problems to cluster and estimate parameters for data

with noise, different distribution shapes and outliers.

Result with data contaminated:
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What happens to GMM when the data has some noise or is

non Gaussian?

Why?

The estimators are not robust.

Mismatch between the model and the data.

No outlier rejection.
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How to address the robustness challenge?

There are mainly two directions to robustify clustering methods in the

literature:

model generalizations

Extra uniform cluster [Banfield and Raftery, 1993]

Model low density areas (RIMLE and OTRIMLE)

[Coretto and Hennig, 2016]

Mixture of t−distributions (t-EM) [Peel and McLachlan, 2000]

models that introduce classical robust techniques in the

estimation

Trimming methods (TCLUST) [Garćıa-Escudero et al., 2008]

k-tau [Gonzalez et al., 2019] and Spatial-EM [Yu et al., 2015]
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Some drawbacks

Some drawbacks of the state of the art robust clustering methods:

No closed equations on the M-step, reliance on non-linear

optimizers (t-EM).

Extra parameters difficult to be tuned (RIMLE, TCLUST).

e.g., if we misspecify the proportion of noise in the TCLUST

algorithm [Gonzalez et al., 2019].

Models are too specific.

Our goal:

flexibility to very general models

no extra parameters
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FEMCA: Model, derivation and

properties



A very general model

We consider x1, . . . , xn independent vectors.

These vectors belong to some clusters C1, . . . ,CK .

x1, . . . , xn ARE NOT i.i.d. !

Cluster characterization

xi and xj belong to Ck if they are drawn from a distribution with the

same features

µk and Σk

The location and the scatter matrix are the features that characterize

the clusters and not a particular distribution as in GMM or t-EM.
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FEMCA: A flexible algorithm relying on a very general model

FEMCA is based on a model where the x1, . . . , xn independent vectors

are characterized by

Stochastic representation

xi ∈ Ck ⇒ xi
d
= µk +

√
Qik
√
τik Ak ui

µk is the mean of the cluster k .

Qik is an independent positive random variable.

τik are scale (nuisance) parameters that increase the flexibility

of the model.

Ak is such that AT
k Ak = Σk (the scatter matrix of the cluster k).

ui is a uniform vector on the unit hyper-sphere.

·ik represents the possible dependence on k and i .
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Elliptical Symmetric family

The stochastic characterization [Cambanis et al., 1981] represents vec-

tors of the Elliptical Symmetric family [Kelker, 1970].

The density can be written as

fxi (x) = Am|τikΣk |−1/2 gik

(
τ−1
ik (x− µk)TΣk

−1(x− µk)
)

for some function gik called the density generator. We denote it as

x ∼ ES(µk , τikΣk , gik).

Distributions caracterization

One-to-one relation between gik and Qik

⇒ the shape of the distributions

This family includes Gaussian, t−distribution, Generalized Gaussian dis-

tribution. Heavier and lighter (than Gaussian) tails.
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Different scenarios

We consider different scenarios based on the nature of the density gen-

erator functions:

gik =



gi ,
each point might come from 6= shaped dist.

BUT shapes do not depend on the cluster

g ,
the density generator function is

always the same (e.g., Gaussian case)

gk , cluster dependent shapes

extra parameters have to be computed (e.g., t-EM)
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FEMCA: A flexible algorithm relying on a very general model

Parameter space

Given {xi}ni=1 ∈ Rm we have to estimate the usual parameters

Θ = {(πk ,µk ,Σk)}k=1,..,K

AND we now have a lot of (nuisance) parameters τ

Θ̃ = {τik}k=1,..,K
i=1,..,n

MLE

We derive the two-step (E-M) algorithm based on the likelihood of the

model (using the trick of [Ollila and Tyler, 2012]).
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E-step: First Miracle

Proposition

Assume gik = gi , then the membership probabilities MLE are

p̂ik =
π̂k

(
(xi − µ̂k)T Σ̂

−1

k (xi − µ̂k)
)−m/2

|Σ̂k |−1/2

∑K
j=1 π̂j

(
(xi − µ̂j)

T Σ̂
−1

j (xi − µ̂j)
)−m/2

|Σ̂j |−1/2

.

Insensitivity: the expression of the membership does not depend on the

particular density gi that generates each data point, neither on the τik

Proof details: see [Roizman et al., 2023]
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M-step: Second Miracle

Proposition (Location and scatter matrix estimators)

We almost obtain Tyler’s estimators.

µ̂k =

n∑
i=1

p̂ikxi

(xi − µ̂k)T Σ̂k
−1(xi − µ̂k)

n∑
i=1

p̂ik

(xi − µ̂k)T Σ̂−1
k (xi − µ̂k)

Σ̂k = m
n∑

i=1

wik(xi − µ̂k)(xi − µ̂k)T

(xi − µ̂k)T Σ̂k
−1(xi − µ̂k)

, with wik = p̂ik/
∑
i

p̂ik
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And the τik ’s?

Furthermore,

Proposition (τik estimator)

τ̂ik =
(xi − µ̂k)T Σ̂

−1

k (xi − µ̂k)

aik
,

where aik depends only on gik

aik = arg sup
t
{tm/2gi,k(t)}

.

e.g., for the Gaussian case aik = m.
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Estimators intuitively

µ̂k and Σ̂k are like usual sample estimators with small weights for outly-

ing points

1

n

n∑
i=1

xi =⇒ 1

n

n∑
i=1

wixi

1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T =⇒ 1

n

n∑
i=1

wik(xi − µ̂)(xi − µ̂)T

with wik ≈ p̂ik

(xi−µ̂k )T Σ̂
−1

k (xi−µ̂k )

Tyler estimators [Tyler, 1987] (classical robust estimator [Maronna, 1976])

fulfill very similar equations. HINT about robustness of the model.
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About FEMCA

Properties

The random vectors that represent the data points are independent

but not necessarily i.i.d.

Generalizes GMM. (Gaussian ∈ ES)

If gik = gi , the membership probabilities do not depend on the

shape of the distributions!

If gik = gk , we can derive extra estimators to be computed on the

M-Step.

The model leads to estimators that are similar to classical robust

estimators (Tyler) [Ollila and Tyler, 2012].
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If the dimension grows... Some hints

When the dimension grows we can better estimate the parameters τik .

Convergence of τ̂ when g is the Gaussian density generator

Let x
d
= µ +

√
τAq, with q a standard Gaussian. Under some

assumptions, for any a ∈ R, ∀ε > 0 and y ∼ N (τ, 2τ 2/m), then

|P({τ̂ ≤ a})− P(y ≤ a)| < ε, if n and m are large enough

This is in agreement with previous RMT results [Couillet et al., 2014].

We can combine this result with parsimonious restrictions on the covari-

ance matrix to avoid issues in the case of very large m.
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Implementation details

The trace of the scatter matrix estimator is fixed.

Four slightly different versions were propsed:

Version 1: the parameter µ used to compute the estimator Σ is the

one obtained in the same iteration of the fixed-point loop.

Version 2: the µ-parameter is the one obtained in the previous

iteration.

Version 3: (xi − µ̂k)T Σ̂
−1

k (xi − µ̂k) for µ are replaced by their

square root (original Tyler M-estimators).

Version 4: Version 3 on top of the algorithm of Version 2.

Center initialization: quick run of k-means.

Code available: github.com/violetr/fem
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Convergence of the fixed-point loops

Setup 1

Setup 2
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Outlier rejection

It is possible to use some heuristic outlier rejection methods based on

∆(xi ; µ̂k , M̂k) = (xi − µ̂k)TM̂k

−1
(xi − µ̂k) ∼?.

Threshold to reject = 1− α quantile of the distribution.

We developed some alternatives [Roizman et al., 2020] based on a scaled

Fisher distribution [Drašković and Pascal, 2018].

Rejection block

It has been implemented and plugged in at the end of the FEMCA

(OPTIONAL).
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FEMCA: Experimental results



Measuring the performance

We compare our algorithm to

k-means

GMM-EM

Spectral Clustering

Mixture of Student’s t (t-EM or EMMIX)

TClust

RIMLE

Metrics

Adjusted Mutual Information (AMI),

Adjusted Rand Index (AR).

Estimation error of the parameters (only for simulations).
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Some simulation results

Mixtures of t-distributions with different degrees of freedom and covari-

ance matrix classes, mixtures of more general distributions, clusters with

different gi .

Setup 1:

t−distributions

ν small

Σ µ ARI
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Setup 2:

t−distributions

ν = 10
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Some simulation results

Setup 3:

Gaussian +

uniform

noise

Σ µ ARI
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Setup 4:

Elliptical

different gi
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FEMCA performs well even in the situations that do not match the model.
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Real data clustering results

MNIST (LeCun, 1998) NORB (LeCun, 2004)

Set k-means GMM t-EM FEMCA spectral TCLUST RIMLE

MNIST38 0.2884 0.5716 0.6397 0.6887 0.6866 0.6847 0.2494

MNIST71 0.8486 0.8905 0.9432 0.9360 0.9384 0.6885 0.2493

MNIST386 0.6338 0.7332 0.8262 0.8306 0.8542 0.8366 0.4274

MNIST386+n 0.4475 0.4909 0.5296 0.5548 0.3115 0.6908 0.1498

smallNORB 0.0015 0.0468 0.4223 0.5067 ∼ 0 0.1330 0.1472

20news 0.1883 0.2739 0.4426 0.5114 0.0987 0.2664 0.0026

Table 1: Median AMI
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Real data clustering results - The NORB case

Dataset kmeans GMM-EM t-EM FEMCA spectral TCLUST RIMLE

small NORB 0.0015 0.0468 0.4223 0.5067 ∼ 0 0.1330 0.1472

t-SNE embedding of the dataset colored with labels:

real labels FEMCA labels GMM-EM labels
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Applications to PolSAR Images



Applications to PolSAR Images

Land use segmentation

Joint work with V. Roizman and G.

Draskovic. [Roizman et al., 2019]

Change detection

Joint work with V. Roizman, G.

Ginolhac and M. Jonckheere.

two times

t0 → t1

one region, two images

It0 → It1

CD map

CD(xl) ∈ {0, 1}

32 / 42



Extension for PolSAR images segmentation

Segment PolSAR images [Conte et al., 2002, Gini et al., 2000] with a

clustering algorithm to detect land use.

Keep flexibility but also take advantage of spatial structure.

Compute by patches → R-EM.
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R-EM: Modifying FEMCA

We propose a modification to include spacial information (and to deal

with small dimension...). We estimate the membership probabilities pij
based on ∆

(l)
ik , computed over all the neighbors.

For each pixel xi :

For each pixel xt in the patch of xi :

∆
(l)
tk = (xt − µ

(l)
k )T (Σ

(l)
k )−1(xt − µ

(l)
k )

Set ∆
(l)
ik = h({∆(l)

tk }t)

xi

For different patch sizes and different h(x) summary functions as mean,

median and trimmed mean.
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Simulation example - clustering results

Image example Classes

From left to right: k-means, GMM and R-EM

6-looked

9-looked

12-looked

Clustering

accuracy

n-looked

6 9 12

k-means 0.85 0.82 0.96

GMM 0.92 0.88 0.98

R-EM 0.92 0.91 0.99
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Conclusions and Perspectives



Conclusions

We developed a very general flexible clustering algorithm based on

Elliptical Symmetric distributions.

We proved some interesting properties.

We showed a good performance of FEMCA on experiments.

We applied the flexible clustering algorithm to PolSAR image

problems.
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Perspectives

Implementation of regularizations methods when m > n.

Design a model selection method more specific than AIC/BIC.

Study of the consistency of the estimators and the behaviour of

the τ ik estimation.

Apply the parameter τik addition to other similar Machine

Learning problems that include covariance matrices.
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Thanks for your attention!

Questions ?
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