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What is a computer model validation?

Physical phenomena(real system):

I Question: how can we study a real phenomenon?

I What is a computer model?



What is a computer model validation?

Physical phenomena(real system)
Physicien−−−−−−−−−−−−−−→

simplify by physical lows
Physical model

I Physicien use a part of reality, complicated

I then find a simple representation to which he applies a theory

I the simple representation help us to reproduce the
functionality of the physical phenomena

I to explain, analyze and predict some aspects



What is a computer model validation?

Physical phenomena(real system)
Physicien−−−−−−−−−−−−−−→

simplify by physical lows
Physical model

Example when we want to study movements of a car?

I do not consider the car itself as a representation

I BUT representing it a point in space to which we assign a
masse and speed

I describe the movements based on the theory of point
mechanics

From this simple representation we can evaluate the movements of
the car



What is a computer model validation?

Physical model
Mathematicien−−−−−−−−−−−−−−−−−−−−−−−→

numerical approximation and algorithms
Numerical code

or computer model
or simulator

I by applying the mathematical approximation techniques and theories

I the physical model is translated to a mathematical model

We obtain therefore what we call numerical code.



What is a computer model validation?

Computer model
Statisticien−−−−−−−−−−−−−−−−−−→

examine by statistical methods
to know if it display a

reliable picture of “reality”?
Statisticien’s work in two steps:

I Verification: quantifying the errors produced by the
approximate resolution of the mathematical problem

I Validation: try to answer the question on the validity of the
mathematical modeling of physical system



What is a computer model validation?

Physical phenomena(real system)
Physicien−−−−−−−−−−−−−−→

simplify by physical lows
Physical model

↪→Model uncertainty

Physical model
Mathematicien−−−−−−−−−−−−−−−−−−−−−−−→

numerical approximation and algorithms
Numerical code

or computer model
or simulator

↪→Numerical uncertainty

Computer model
Statisticien−−−−−−−−−−−−−−−−−→

examine by statistical methods
to know if it display a reliable

picture of “reality”?



Physical system: Mathematical notation

For unknown real physical system r(xxx)

I physical parameters: xxx ∈ X ⊂ Rd observable and controllable
inputs

the observation y can be obtained as

xxx ∈ Rd → r: physical system → y ∈ R

or
y = r(xxx) + ε

with ε ∼ N (0, λ) : measure error that degrades the knowledge of
r(xxx).



Computer model: Mathematical notation

Computer model is represented by a function f :

f : Rd × Rp → R
(xxx ,θθθ) → f (xxx ,θθθ)

in which

I The inputs θθθ are the calibration parameters of the
computation code.

The function f (xxx ,θθθ):

I can have a simple linear structure f (xxx ,θθθ) = g(xxx)θθθ

Or challenges
I can be a complex function with large computation time

I sparing computation time by meta-modelling



Validation problem: Statistical modelling

Suppose that
δ(xxx) = r(xxx) − f (xxx ,θθθ)

δ(xxx) is a stochastique function and called “code error”. Then the
observation y can be obtained as

y = f (xxx ,θθθ) + δ(xxx) + ε

Remark

I Identifiability issue: How to define θθθ and δ w.r.t r(xxx) in a
good way? It is not clear.

Does the computer code mimics the reality or

y = f (xxx ,θθθ) + ε?



Validation problem: Statistical modelling

We are interested in testing hypotheses

H0 : δ(xxx) = 0

H1 : δ(xxx) 6= 0

The code validation can be performed using Bayesian model
selection methods Damblin et al. (2016).

M0 : y = f (xxx ,θθθ0) + ε0

M1 : y = f (xxx ,θθθ1) + δ(xxx) + ε1.

where M0 and M1 are the pure code and the
discrepancy-corrected code, respectively.



Reminder

Bayesian model choice:

I a special case of testing hypotheses theory

I comparison of k potential statistical models towards the
selection of model that fits the data “best”

I not to seek to identify which model is “true”, but to indicate
which fits data better

The most common approaches to Bayesian hypothesis testing in
practice

I posterior probabilities of the model given the data

I Bayes factor and its approximations such as the Bayesian
information criterion (BIC) and the Deviance information
criterion (DIC) and posterior predictive tools and their variants



Standard Bayesian approach to testing

Suppose that two families of models under comparison are given by

M0 : x ∼ π0(x |θ0) , θ0 ∈ Θ0 and M1 : x ∼ π1(x |θ1) , θ1 ∈ Θ1 ,

and associate with each model a prior distribution,

θ0 ∼ π0(θ0) and θ1 ∼ π1(θ1) ,

ω0 = π(M0) and ω1 = π(M1)



Standard Bayesian approach to testing

In order to compare the marginal likelihoods

m0(x) =

∫
Θ0

π0(x |θ0)π0(θ0) d(θ0) and m1(x) =

∫
Θ1

π1(x |θ1)π1(θ1) d(θ1)

either through Bayes factor or posterior probability, respectively:

B01 =
m0(x)

m1(x)
, P(M0|x) =

ω0m0(x)

ω0m0(x) +ω1m1(x)
;

the latter depends on the prior weights ωi .



How to make a decision

Bayesian decision step in order to comparing two models

I comparing Bayes factor B01 with threshold value of one or

I comparing posterior probability P(M0|x) with bound

When comparing more than two models

I selecting model with highest posterior probability but highly
dependent on the prior modeling, even with large databases



How to make a decision

Bayesian decision step in order to comparing two models

I comparing Bayes factor B01 with threshold value of one or

I comparing posterior probability P(M0|x) with bound

When comparing more than two models

I selecting model with highest posterior probability but highly
dependent on the prior modeling, even with large databases



Interpretation of Bayes Factor

If ω0 = ω1 = 0.5, then

B01 =
m0(x)

m1(x)
, P(M0|x) =

B01

B01 + 1
;

Jeffreys gave a scale for interpretation of B01:
B01, Strength of evidence supporting M0, P(M0|x)
B01 < 1, negative, P(M0|x) < 0.5
1 < B01 < 101/2, barely worth mentioning, 0.5 < P(M0|x) < 0.75
101/2 < B01 < 10, substantial, 0.75 < P(M0|x) < 0.9
10 < B01 < 103/2, strong, 0.9 < P(M0|x) < 0.96
103/2 < B01 < 100, very strong, 0.96 < P(M0|x) < 0.99
B01 > 100, decisive, P(M0|x) > 0.99



Some difficulties with traditional handling of Bayesian tests

B01 =
m0(x)

m1(x)
, P(M0|x) =

ω0B01

ω0B01 +ω1
;

I subsequent and delicate interpretation (or calibration) of the
strength towards supporting a given hypothesis or model,
because it is not a Bayesian decision rule

I long-lasting impact of the prior modeling, despite overall
consistency proof for Bayes factor



Some more difficulties

I discontinuity in use of improper priors since they are not
justified in most testing situations, leading to many alternative

I binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, in connection with
rudimentary loss function

I lack of assessment of uncertainty associated with decision
itself

I difficult computation of marginal likelihoods in most settings
with further controversies about which computational solution
to adopt



Testing problems via mixture estimation model

A new paradigm for testing: Simple representation of the testing
problem as a two-component mixture estimation problem where
the weights are formally equal to 0 or 1

I provides a convergent and naturally interpretable solution,

I allowing for a more extended use of improper priors

Inspired from consistency result of Rousseau and Mengersen
(2011) on estimated overfitting mixtures

I over-parameterised mixtures can be consistently estimated

[Kamary & Mengersen & Robert & Rousseau, 2014]



Testing problems via mixture estimation model

Given two statistical models,

M0 : x ∼ π0(x |θ0) , θ0 ∈ Θ0 and M1 : x ∼ π1(x |θ1) , θ1 ∈ Θ1 ,

embed both within an encompassing mixture

Mα : x ∼ απ0(x |θ0) + (1 − α)π1(x |θ1) , 0 ≤ α ≤ 1 (1)

I Both models correspond to special cases of (1), one for α = 1
and one for α = 0

I Draw inference on mixture representation (1), as if each
observation was individually and independently produced by
the mixture model

[Kamary & Mengersen & Robert & Rousseau, 2014]



Advantages

I relying on a Bayesian estimate of the weight α rather than on
posterior probability of model M1 does produce an equally
convergent indicator of which model is “true”

I interpretation of estimator of α at least as natural as handling
the posterior probability, while avoiding zero-one loss setting

I highly problematic computations of the marginal likelihoods is
bypassed, since standard algorithms are available for Bayesian
mixture estimation

I allows to consider all models at once rather than engaging in
pairwise costly comparisons



More advantages

I posterior distribution of α evaluates more thoroughly strength
of support for a given model than the single figure outcome of
a posterior probability

I additional feature missing from traditional Bayesian answers:
a mixture model acknowledges possibility that, for a finite
dataset, both models or none could be acceptable

I non-informative (improper) priors are manageable in this
setting, provided both models first reparameterised towards
shared parameters, e.g. location and scale parameters

I in special case when all parameters are common

Mα : x ∼ απ0(x |θ) + (1 − α)π1(x |θ) , 0 ≤ α ≤ 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available



Mixture estimation using latent variable
Consider sample x = (x1, x2, . . . , xn) from (1). Completion by
latent component indicators ζi leads to completed likelihood

(θ, α0, α1 | x, ζ) =

n∏
i=1

αζiπζi (xi | θζi )

= αn1(1 − α)n2
n∏

i=1

πζi (xi | θζi ) ,

where

(n1, n2) =

(
n∑

i=1

Iζi=0,

n∑
i=1

Iζi=1

)
under constraint

n =

1∑
j=

n∑
i=1

Iζi=j

.
[Diebolt & Robert, 1990]



Mixture estimation using latent variable

Using natural Gibbs implementation

I under a Beta(a1, a2), α is generated from a Beta
Beta(a1 + n1, a2 + n2)

I Gibbs sampling scheme is valid from a theoretical point of
view

I convergence difficulties in the current setting, especially with
large samples

I due to prior concentration on boundaries of (0, 1) for the
mixture weight α



Metropolis-Hastings algorithms

I model parameters θi generated from respective full posteriors
of both models (i.e., based on entire sample)

π(θi |x, α) = (απ0(x | θ0) + (1 − α)π1(x | θ1))π(θi ); i = 0, 1

I mixture weight α generated from a random walk proposal on
(0, 1)



Gibbs versus MH implementation

(Left) Gibbs; (Right) Metropolis–Hastings sequences (αt) when the mixture
model is αN (µ, 1) + (1 − α)N (0, 1) for a N (0, 1) sample of size N = 5, 10,
50, 100, 500, 103 (from top to bottom) based on 105 simulations. The y -range
range for all series is (0, 1).



Illustrations

Computer model validation

Introduction and Motivations

Testing problems via mixture estimation model

Mixture estimation

Illustrations
Simple example: Poisson versus Geometric
Code validation via mixture model estimation

Conclusion and perspectives



Poisson or Geometric

I Models under comparison:

M0 : P(λ) and M1 : G eo(p)

I if both models share a common parameter λ,

Mα : αP(λ) + (1 − α)G eo(1/1+λ)

I prior modeling:

π(λ) = 1/λ; α ∼ Be(a0, a0)

I posterior simulation:

I independent Metropolis–within–Gibbs



Parameter estimation
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Posterior means of λ and medians of α for 100 Poisson P(4) datasets of size
n = 1000, for a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation
is based on 104 Metropolis-Hastings iterations.



MCMC convergence
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Dataset from a Poisson distribution P(4): Estimations of (top) λ and
(bottom) α via MH for 5 samples of size n = 5, 50, 100, 500, 10, 000.



Consistency
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Evolution of mixture weight over sample size: Posterior means (sky-blue)
and medians (grey-dotted) of α, over 100 Poisson P(4) datasets for sample
sizes from 1 to 1000.



Code validation: Mixture modelling of competing models

Suppose that

I X = (x1 . . . xn)
′: input physical experiment matrix of size

n × d

I Y = (y1, . . . , yn): vector of related available measurements of
size n

then for i = 1, . . . , n, we want to choose a model between

M0 : yi = g(xxx i )θθθ0 + ε
(0)
i

M1 : yi = g(xxx i )θθθ1 + δ(xxx i ) + ε
(1)
i .

where ε
(0)
i ∼ N (0, λ0) and ε

(1)
i ∼ N (0, λ1).



Code validation via mixture model estimation

M0 : yi = g(xxx i )θθθ0 + ε
(0)
i

M1 : yi = g(xxx i )θθθ1 + δ(xxx i ) + ε
(1)
i .

Remark

I Discrepancy-corrected prediction is traditionally based on the
Gaussian processes

[Damblin et al., 2016]

I difficulty item from the dependence of the data which was not
the case in the initial implementation of mixture technique.

[Kamary et al., 2014]

We therefore define the mixture of the competing models under
the condition of considering δ(xxx i ) as a latent variable to be
estimated with the other model parameters.



Code validation via mixture model estimation

M0 : yi = g(xxx i )θθθ0 + ε
(0)
i

M1 : yi = g(xxx i )θθθ1 + δ(xxx i ) + ε
(1)
i .

↪→ after embedding both models within an encompassing mixture
model

`Mα(θθθ0, λ0, θθθ1, λ1, δ;Y ,X ) =

n∏
i=1

(α`M0(θθθ0, λ0; yi , xi ) + (1 − α)`M1(θθθ1, λ1, δ; yi , xi )) .

(2)

where

`M0(θθθ0, λ0; yi , xi ) = exp

(
− 1

2λ2
0
(yi−g(xxx i )θθθ0)

2

)
/(2πλ20)

n/2

`M1(θθθ1, λ1, δ; yi , xi ) = exp

(
− 1

2λ2
1
(yi−g(xxx i )θθθ1−δ(xi ))

2

)
/(2πλ21)

n/2 (3)



Parameter prior choice

In order to able the non-informative priors to be used for mixture
parameters, suppose that the parameters θ and λ are shared:

M0 : yi = g(xxx i )θθθ+ εi

M1 : yi = g(xxx i )θθθ+ δ(xxx i ) + εi .

then `Mα equals

1/(2πλ2)n/2
n∏

i=1

(
α exp(−

1

2λ2
(yi − g(xi )θθθ)

2) + (1 − α) exp(−
1

2λ2
(yi − g(xi )θθθ − δ(xi ))

2)

)
.

(4)
and

π(θθθ, λ) = 1/λ



Parameter prior choice

`Mα equals

1/(2πλ2)n/2
n∏

i=1

(
α exp(−

1

2λ2
(yi − g(xi )θθθ)

2) + (1 − α) exp(−
1

2λ2
(yi − g(xi )θθθ − δ(xi ))

2)

)
.

(5)

The discrepancy δ has a Gaussian process prior as

δ(X ) ∼ G P(µδ, Σδ); Σδ = σ
2
δCorrγδ(xi , xi ′)

where
Corrγδ(xi , xi ′) = exp (−|xi−xi ′ |/γδ) .



Parameter prior choice

Theorem

Let g : Rd → Rd ; d > 1 be a finite-valued function and for any
vector xi of size d, g(xij) 6= 0; j = 1, . . . , d. The posterior
distribution associated with the prior π(θθθ, λ) = 1/λ and with the
likelihood `Mα is proper when

I for any 0 < k < 1, the hyperparameter σ2δ of the discrepancy
prior distribution is reparameterized as σ2δ = λ2/k and so
Σδ = (λ2/k)Corrγδ when Corrγδ is the correlation function of δ.

I the dimensionality, d, is less than n;

I the mixture weight α has a proper beta prior B(a0, a0);

I γδ has a proper Beta prior B(b1, b2).

I proper distribution is used on k.



Simulation studies

Simulated data: If x = {i/n}ni=1,

I g(x) with a degree 2 polynomial code in x as g(x) = (1, x , x2)

I parameter true values, θθθ∗ = (4, 1, 2) ′, λ∗ = 0.1 and k∗ = 0.1

We simulate samples of size n by considering that the true value of
the parameter γδ varies between (0, 1). Under the priors

I π(θθθ, λ) = 1/λ

I γδ ∼ Beta(b1, b2)

I k ∼ Beta(2, 18)

I α ∼ Beta(0.5, 0.5)

we estimate mixture model Mα by implementing
Metopolis-within-Gibbs algorithm.



Sensitivity of the correlation length to the prior choice

(Top) Beta prior distribution Beta(b1, b2) with (left) b1 = b2 = 1; (middle)
b1 = b2 = 0.5; (right) different curves are related to the b1 and b2 indicated on
the plot. (Bottom) Empirical posterior distributions of γδ obtained for each
prior illustrated on the top when four datasets of size n = 50 are simulated
from M1 for the true value of γ∗δ = 0.01, 0.1, 0.5, 0.9. The number of MCMC
iterations is 2 × 104 with a burn-in of 103 iterations.



Sensitivity of δ to the choice of δ prior

For three datasets of size n = 50 simulated from M1 when the true value γ∗δ is
(left) 0.1 ; (right) 0.9: Comparison between the posterior distributions of
δ(xi ); i = 1, . . . , n and the true value (black points). For all plots, the results
are shown in (skyblue color) when the prior of δ(x) is G P(1n, Σδ) and in (gray
color) when δ(x) ∼ G P(0n, Σδ). The number of MCMC iterations is 2 × 104

with a burn-in of 103 iterations.



Sensitivity of θθθ to the choice of δ prior

For three datasets of size n = 50 simulated from M1 when the true value γ∗δ is
(left) 0.1 ; (right) 0.9: Comparison between the posterior distributions of θ1
and the true value (dotted line). For all plots, the results are shown in (skyblue
color) when the prior of δ(x) is G P(1n, Σδ) and in (gray color) when
δ(x) ∼ G P(0n, Σδ). The number of MCMC iterations is 2 × 104 with a burn-in
of 103 iterations.



Sensitivity of α to the choice of δ prior

For three datasets of size n = 10, 30, 50 are simulated from M1 when the true
value γ∗δ is (left) 0.1; (right) 0.9 : Comparison between the posterior
distributions of α, the weight of M0 in the mixture model. For different sample
sizes, the results are shown in (skyblue color) when the prior of δ(x) is
∼ G P(1n, Σδ) and in (gray color) when δ(x) ∼ G P(0n, Σδ). The number of
MCMC iterations is 2 × 104 with a burn-in of 103 iterations.



Sensitivity of λ to the choice of δ prior

For a sample of size 50 simulated from M1 when γ∗δ = 0.1 and
δ∗(x) ∼ G P(1n, Σδ): (Top) Point process representation of the posterior draws
of α versus λ, (bottom) Comparison between data points yi versus xi (black
points), the posterior estimate of M1 obtained by averaging over MCMC
iterations (dotted line) with overlaying box plots (gold) of the last 1000
posterior draws and the true code (solide line). Mixture model parameters have
been estimated when the prior distribution of δ(x) is (Left) G P(0n, Σδ);
(Right) G P(1n, Σδ).



Conclusion

The code validation problem

I is considered as a Bayesian model selection

I resort to a technique developed by Kamary et al., 2014 that
rely on the encompassing mixture model

I common parameterisation allows for reference priors

I posterior distribution of the parameters is highly subjected to
the choice of the discrepancy prior

I posterior distribution of the mixture component weights is
used to make a decision about the data

I α can capture the true model only under the condition that
the δ prior is informative enough



Perspectives

I what about the real datasets?

I what if the computer model has a complex structure?
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