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Representation Learning Based on Givens 
Transformation and its applications



1 Background
• Representation Learning (RL) involves automatically finding the features or

representations of data useful for predictive tasks.

• Matrix Factorization (MF) is a technique to decompose a matrix into a product
of matrices, revealing hidden structures in data.

• By decomposing data into simpler matrices, it reveals the underlying structure
or patterns that are essential for representation learning.



1 Background
• The “Orthogonal constraints” of matrix decomposition theories.

• Advantages: 
• Ensures the independence of latent dimensions;
• removes redundant information;
• improves the efficiency of representation learning; 
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• Advantages: 
• Ensures the independence of latent dimensions;
• removes redundant information;
• improves the efficiency of representation learning; 

• Disadvantages:
• When manipulating representations, the orthogonality of the representation 

space can be easily disrupted, affecting the effectiveness of subsequent models; 
• Naturally introduces constraints, thereby increasing the number of 

representational elements.
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• The “Orthogonal constraints” of matrix decomposition theories

• Typical Example: Singular Value Decomposition, SVD

ü 𝑼 𝒂𝒏𝒅 𝑽 have inherent constraints，say U=

[𝒖𝟏, 𝒖𝟐, … , 𝒖#]：

𝒖$𝒖𝒋 = ,𝟏, 𝒊 = 𝒋
𝟎, 𝒊 ≠ 𝒋

ü For column orthogonal matrices with 𝒓 columns, 

normality introduces 𝒓 constraints, orthogonality 

introduces 𝒓(𝒓 − 𝟏)/𝟐 constraints, thus 𝒓(𝒓 + 𝟏)/𝟐

constraints in total.



2 Methodology applied
• In order to solve existed problems, we are going to use Givens 

Transformation to construct the representation space.

• For arbitrary vector 𝑾 = (𝒘𝟏, 𝒘𝟐, … , 𝒘𝒎)𝑻, 𝟏 ≤ 𝒌 < 𝒊 ≤ 𝒎,Givens matrix is 
defined as

where, 𝒄 = 𝒘𝒌
𝒔𝒌𝒊
= 𝒄𝒐𝒔𝜽𝒌𝒊, 𝒅 =

𝒘𝒊
𝒔𝒌𝒊
= 𝒔𝒊𝒏𝜽𝒌𝒊， (𝒔𝒌𝒊 = (𝒘𝒌

𝟐 +𝒘𝒊
𝟐)𝟏/𝟐) posed in (k, i) and (i, k).

• 𝑮𝒌𝒊𝑾 represents a counterclockwise rotation of the vector x in the (i, j) plane 
of θ radians !

𝑮𝒌𝒊𝑾 = (𝒘𝟏, … ,𝒘𝒌(𝟏, 𝒔𝒌𝒊, … ,𝒘𝒊(𝟏, 𝟎, … )𝑻;

• Thus 𝑮𝟏𝒎𝑮𝟏(𝒎+𝟏)…𝑮𝟏𝟐𝑾 = (𝒔, 𝟎, … , 𝟎)𝑻, where 𝐬 = (𝒘𝟏
𝟐 +𝒘𝟐

𝟐 +⋯+𝒘𝒎
𝟐 )𝟏/𝟐.

• For normalized vector and 𝒌 = 𝟏!

𝑮𝟏𝒎𝑮𝟏(𝒎(𝟏)…𝑮𝟏𝟐𝑾 = (𝟏, 𝟎,… , 𝟎)𝑻.



• Givens Transformation of Column Orthogonal Matrices

• For column orthogonal matrix 𝑨 ∈ ℝ𝒎×𝒓, there are[ 𝒎×𝒓 − 𝒓(𝒓 +

𝟏)/𝟐]Givens matrices(k = 1,2,…,r; i = k+1, k+2,…,m) that satisfy!

2 Methodology applied
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• Inverse Transformation of Column Orthogonal Matrices

• Storing [ 𝒎×𝒓 − 𝒓(𝒓 + 𝟏)/𝟐]Givens matrices"we can get 𝑨 ∈ ℝ𝒎×𝒓!



3 Constructing embedding space
• Based on that, we can easily acquire an enhanced version of SVD (E-SVD), a 

method eliminating all redundancies in SVD matrices and enhancing SVD 
compression losslessly.
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• (1) The number of storage units 
SVD compression:

(𝑚 + 𝑛 + 1) ⋅ 𝑙; 

• (2) The freely valued elements of 
orthonormal column matrix 𝑼: 

𝑚 ⋅ 𝑙 − 0.5* 𝑙 ⋅ (𝑙 + 1); 

• (3) The freely valued elements of 
orthonormal column matrix 𝑽 : 

𝑛 ⋅ 𝑙 − 0.5* 𝑙 ⋅ (𝑙 + 1); 

• (4) The nonzero elements of 
diagonal matrix 𝜮:  𝑙; 

• (5) The number of storage units 
after E-SVD:

(𝑚 + 𝑛 − 𝑙) ⋅ 𝑙.

[1] Wang H, Zhang Y, Zhao J. Enhancing the SVD compression losslessly[J]. Journal of Computational Science, 2023, 74: 102182.



3 Constructing embedding space
Storage ratio analysis
• We can use Storage Ratio (SR) to indicate the ratio of the reduced storage units 

to that of the original matrix.
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ü The SVD compression would fail to 
compress data in some situations.

ü To clearer refer to the limitation of 
SVD compression, we would denote 𝑙-
as the 𝑙 where SVD compression fails, 
which satisfies 𝑙- = ⌊ 𝑚 ⋅ 𝑛

𝑚 + 𝑛 + 1 ⌋.

[1] Wang H, Zhang Y, Zhao J. Enhancing the SVD compression losslessly[J]. Journal of Computational Science, 2023, 74: 102182.



3 Constructing embedding space
Storage ratio analysis
• We can use Storage Ratio (SR) to indicate the ratio of the reduced storage units 

to that of the original matrix.
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ü The SVD compression would fail to 
compress data in some situations.

ü To clearer refer to the limitation of 
SVD compression, we would denote 𝑙0 
as the 𝑙 where SVD compression fails, 
which satisfies 𝑙- = ⌊ 𝑚 ⋅ 𝑛

𝑚 + 𝑛 + 1 ⌋.

ü When SVD fails, E-SVD can still 
compress the data and use only 75% 
storage space to preserve the same 
amount of information.



3 Constructing embedding space
Experimental Evidences

11[1] Wang H, Zhang Y, Zhao J. Enhancing the SVD compression losslessly[J]. Journal of Computational Science, 2023, 74: 102182.
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12[1] Wang H, Zhang Y, Zhao J. Enhancing the SVD compression losslessly[J]. Journal of Computational Science, 2023, 74: 102182.



4 The invertibility of embedding

• Origin from a problem in digital watermarking:

13[2] Zhang Y, Wang H, Zhao J. Eliminating orthonormal constraints of SVD to guarantee full retrievability of blind watermarking[J]. 
Multimedia Tools and Applications, 2023: 1-27.
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Watermark Embedding



4 The invertibility of embedding

15

Watermark Extraction

[2] Zhang Y, Wang H, Zhao J. Eliminating orthonormal constraints of SVD to guarantee full retrievability of blind watermarking[J]. 
Multimedia Tools and Applications, 2023: 1-27.



4 The invertibility of embedding
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Experiment results – Robustness comparison

[2] Zhang Y, Wang H, Zhao J. Eliminating orthonormal constraints of SVD to guarantee full retrievability of blind watermarking[J]. 
Multimedia Tools and Applications, 2023: 1-27.



5 The sensitivity of embedding
• If the matrix is an image, are there any connection between the change of an 

image and the change of corresponding 𝜃?
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5 The sensitivity of embedding
• If the matrix is an image, are there any connection between the change of an 

image and the change of corresponding 𝜃?
Recall our purpose that to detect image change quickly, 
it is reasonable to use the 1-rank approximation of 𝒂 as 
the analysis object, then we can reconstruct 𝒂 using 𝜃.

In order to figure out that when 𝒂 changes, which 𝜃
would be more indicative, it is naturally for us to 
think about calculating derivatives.

[3] Zhang Y, Zhao J. θ is all you need: Revisiting SVD in caputuring changes in matrices[C]//Proceedings of the 2022 5th 
International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-9.
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5 The sensitivity of embedding
• If the matrix is an image, are there any connection between the change of an 

image and the change of corresponding 𝜃?
Specifically, we can find out for some elements, their total differentials are not depend on all 
angles, i.e. only relates to specific angles. Typically, elements in the forth line satisfy.
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5 The sensitivity of embedding
• If the matrix is an image, are there any connection between the change of an 

image and the change of corresponding 𝜃?

It is evident that, among all elements in >𝒂, >𝒂.. is the most “independent” one, which means that 
its perturbation can be completely captured by only two 𝜃, i.e., 𝜃41

𝑼 and 𝜃41
𝑽 .
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5 The sensitivity of embedding

• Proposed change detection scheme

[3] Zhang Y, Zhao J. θ is all you need: Revisiting SVD in caputuring changes in matrices[C]//Proceedings of the 2022 5th 
International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-9.
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5 The sensitivity of embedding

• Simulation Result

[3] Zhang Y, Zhao J. θ is all you need: Revisiting SVD in caputuring changes in matrices[C]//Proceedings of the 2022 5th 
International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-9.
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5 The sensitivity of embedding

• Real Result

[3] Zhang Y, Zhao J. θ is all you need: Revisiting SVD in caputuring changes in matrices[C]//Proceedings of the 2022 5th 
International Conference on Algorithms, Computing and Artificial Intelligence. 2022: 1-9.



6 Summary

Representation learning based on Givens transformation and its applications

Q The construction of embedding space

Theoretical Methodology

Compression Analysis

Q The invertibility of embedding space

Real Problem in Digital Watermarking

Novel Watermarking Scheme

Q The sensitivity of embedding space

Theoretical Deduction

Experimental results
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Thanks for your listening!


