Functional Isolation Forest

Pavlo Mozharovskyi

joint with Guillaume Staerman, Stephan Clémençon, and Florence D'Alché-Buc

LTCI, Telecom Paris, Institut Polytechnique de Paris

Séminaire de statistique appliquée du CNAM

Paris, July 24, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest

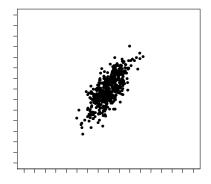
The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

A real task

Regard two measurements during a test in a production process:

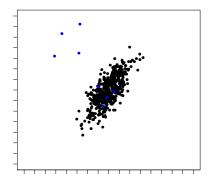


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Given training data, polluted or not with anomalies:detect anomalies in the given data.

A real task

Regard two measurements during a test in a production process:



Given training data, polluted or not with anomalies:

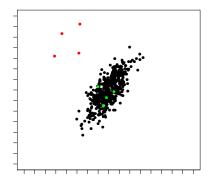
detect anomalies in the given data.

For new data, determine:

Whether new observations are normal data or anomalies?

A real task

Regard two measurements during a test in a production process:



Given training data, polluted or not with anomalies:

detect anomalies in the given data.

For new data, determine:

Whether new observations are normal data or anomalies?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A training data set:

$$\boldsymbol{X} = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_n\} \subset \mathbb{R}^d$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

of observations in the *d*-dimensional Euclidean space.

A training data set:

$$oldsymbol{X} = \{oldsymbol{x}_1,...,oldsymbol{x}_n\} \subset \mathbb{R}^d$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

of observations in the d-dimensional Euclidean space.

Typical example: a table from a data base, with lines being observations (=individuals, items,...).

A training data set:

$$oldsymbol{X} = \{oldsymbol{x}_1,...,oldsymbol{x}_n\} \subset \mathbb{R}^d$$

of observations in the *d*-dimensional Euclidean space.

- Typical example: a table from a data base, with lines being observations (=individuals, items,...).
- Construct a decision function:

$$\mathbb{R}^d \rightarrow \{-1,+1\} : \mathbf{x} \mapsto g(\mathbf{x}),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which attributes to any (possible) $\mathbf{x} \in \mathbb{R}^d$ a label whether it is an anomaly (*e.g.*, +1) or a normal observation (*e.g.*, -1).

A training data set:

$$oldsymbol{X} = \{oldsymbol{x}_1,...,oldsymbol{x}_n\} \subset \mathbb{R}^d$$

of observations in the *d*-dimensional Euclidean space.

Typical example: a table from a data base, with lines being observations (=individuals, items,...).

Construct a decision function:

$$\mathbb{R}^d \rightarrow \{-1,+1\} : \mathbf{x} \mapsto g(\mathbf{x}),$$

which attributes to any (possible) $\mathbf{x} \in \mathbb{R}^d$ a label whether it is an anomaly (*e.g.*, +1) or a normal observation (*e.g.*, -1).

• It is more useful to provide an ordering on \mathbb{R}^d :

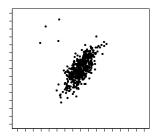
$$\mathbb{R}^d \to \mathbb{R} : \mathbf{x} \mapsto g(\mathbf{x}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

such that abnormal observations obtain higher anomaly score.

Anomaly Detection (AD)

- What is Anomaly detection?
 - Identify unusual patterns that do not conform to expected behavior.
- Applications : Network intrusions, credit card fraud detection, insurance, finance, military surveillance, predictive maintenance, medical monitoring.

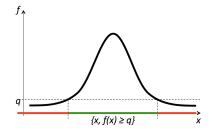


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Unsupervised Anomaly Detection

Unsupervised Anomaly Detection: data are unlabelled. We suppose that all data come from the same distribution μ and that anomalies are very rare, *i.e.*, belongs to the low density regions.

If μ admits a density f w.r.t. a measure ρ , the goal of anomaly detection can be formulated as the recovery of upper-level sets $\{x : f(x) \ge q\}$, $q \ge 0$.

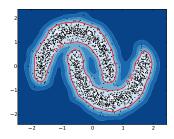


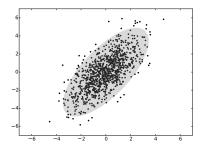
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Statistical inference

Plug-in method : Estimation by $\{x : \hat{f}(x) \ge q\}$.

▶ Direct methods : Build a score function $s : \mathcal{X} \to \mathbb{R}$ such that $\{x : s(x) \ge q\}$ is close to $\{x : f(x) \ge q\}$.





(日)

- 3

Unsupervised AD in practice

How to do it in practice?

Step 1. Learn a score function $s : \mathcal{X} \to \mathbb{R}$ which assigns a score to each data.

Step 2. Find the best treshold to construct a decision function which separates "normal" and "abnormal" data and then induces two regions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 3. Detect anomalies among new observations.

Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest

The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.

• Main idea: Outlying observations are isolated faster.

- Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection method inherited from the famous random forest algorithm (Breiman, 2001).
- Since no supervised feedback is given, isolation forest is based on purely random (uniform) variable-based partitioning.
- Main idea: Outlying observations are isolated faster.
- Tree-kind partitioning is done until "full isolation": outlying observations will have smaller depth (on an average) in the isolation tree.
- ► A monotone transform is usually applied to the aggregated estimate.

To reduce both masking effect and computation cost, small-size sub-sampling is used instead of bootstrap.

Isolation forest (Liu, Ting, Zhou; 2008) Illustration: Isolation tree

Isolation forest

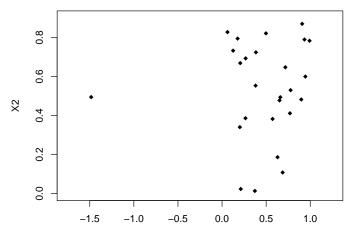


Illustration: Isolation tree

Isolation tree, split 0

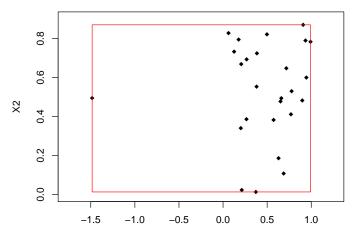
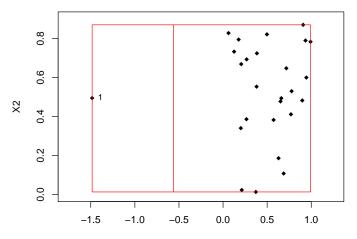


Illustration: Isolation tree

Isolation tree, split 1



X1

Illustration: Isolation tree

Isolation tree, split 2

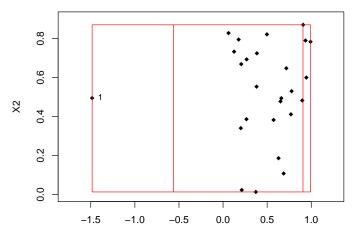
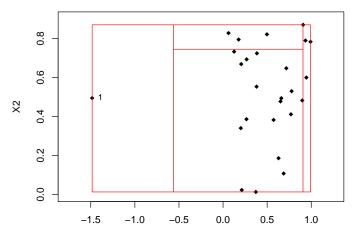


Illustration: Isolation tree

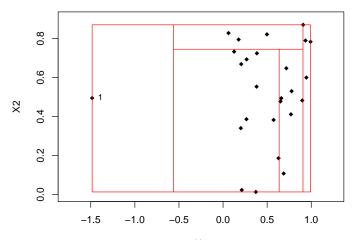
Isolation tree, split 3



X1

Illustration: Isolation tree

Isolation tree, split 4



X1

Illustration: Isolation tree

Isolation tree, split 5

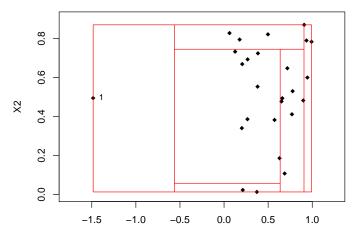
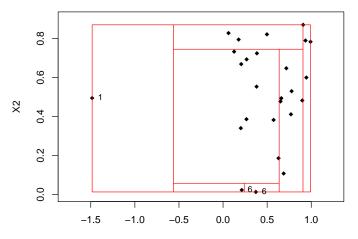


Illustration: Isolation tree

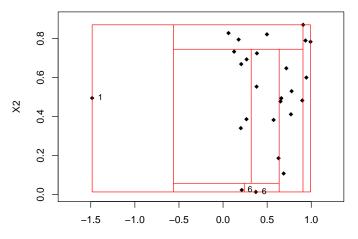
Isolation tree, split 6



X1

Illustration: Isolation tree

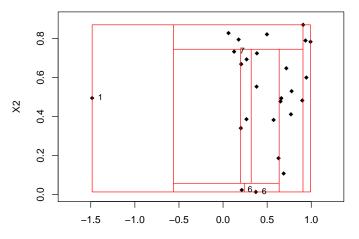
Isolation tree, split 7



X1

Illustration: Isolation tree

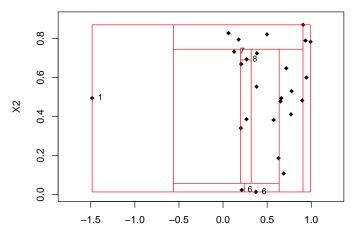
Isolation tree, split 8



X1

Illustration: Isolation tree

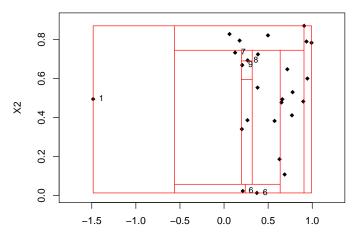
Isolation tree, split 9



X1

Illustration: Isolation tree

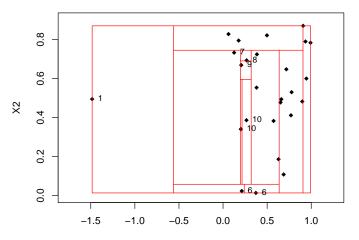
Isolation tree, split 10



X1

Illustration: Isolation tree

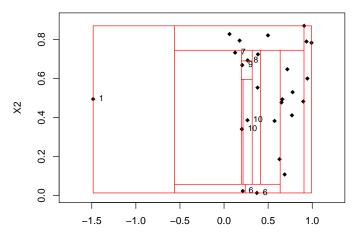
Isolation tree, split 11



X1

Illustration: Isolation tree

Isolation tree, split 12



X1

Illustration: Isolation tree

Isolation tree, split 13

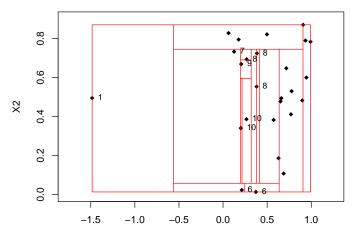
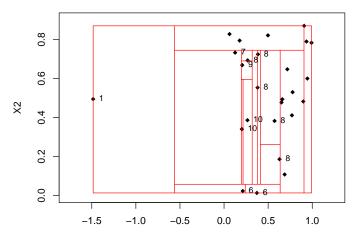


Illustration: Isolation tree

Isolation tree, split 14



X1

Illustration: Isolation tree

Isolation tree, split 15

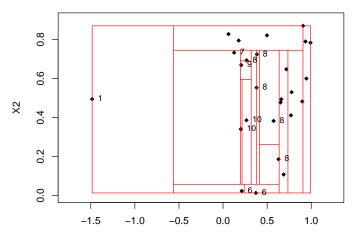
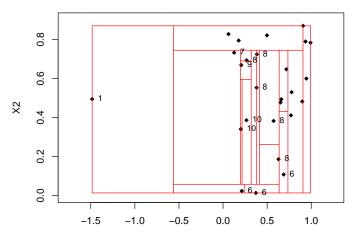


Illustration: Isolation tree

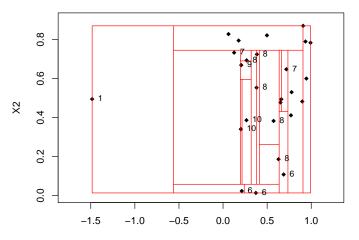
Isolation tree, split 16



X1

Illustration: Isolation tree

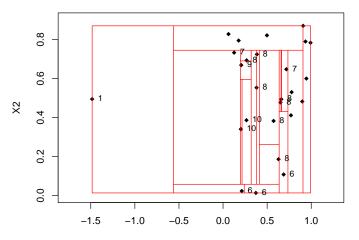
Isolation tree, split 17



X1

Illustration: Isolation tree

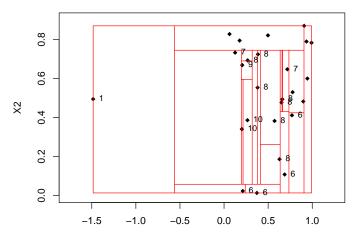
Isolation tree, split 18



X1

Illustration: Isolation tree

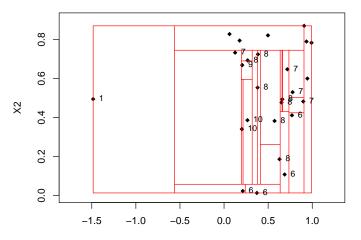
Isolation tree, split 19



X1

Illustration: Isolation tree

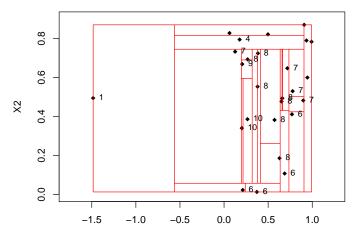
Isolation tree, split 20



X1

Illustration: Isolation tree

Isolation tree, split 21



X1

Illustration: Isolation tree

Isolation tree, split 22

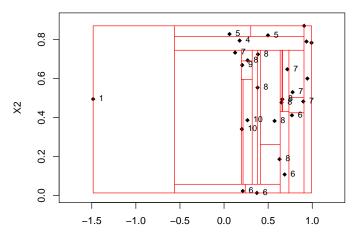


Illustration: Isolation tree

Isolation tree, split 23

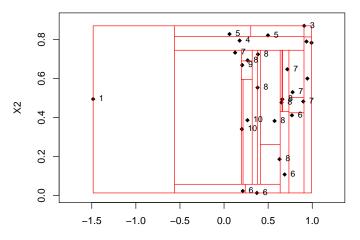


Illustration: Isolation tree

Isolation tree, split 24

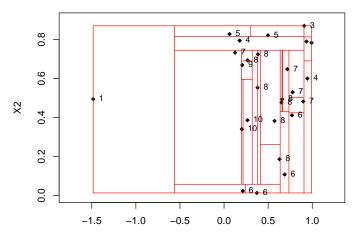
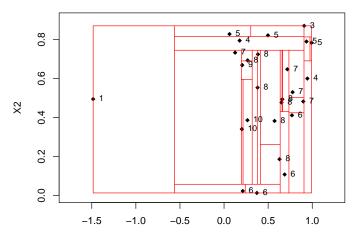


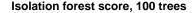
Illustration: Isolation tree

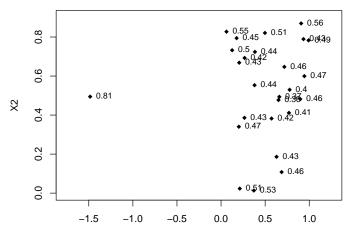
Isolation tree, split 25



X1

Illustration: Anomaly score





・ロト ・ 同ト ・ ヨト ・ ヨト

э

Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest

The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Functional Data Framework

Let X be a functional random variable that takes its values in a functional space and X₁,..., X_n be an i.i.d. sample from X:

$$egin{array}{rcl} X & : & (\Omega, \ \mathcal{A}, \ \mathbb{P}) & \longrightarrow & \mathcal{H}([0,1]) \ & \omega & \longmapsto & X(\omega) = (X_t(\omega))_{t \in [0,1]}. \end{array}$$

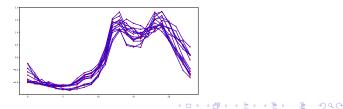
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Functional Data Framework

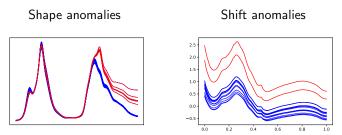
Let X be a functional random variable that takes its values in a functional space and X₁,..., X_n be an i.i.d. sample from X:

$$egin{array}{rcl} X & : & (\Omega, \ \mathcal{A}, \ \mathbb{P}) & \longrightarrow & \mathcal{H}([0,1]) \ & \omega & \longmapsto & X(\omega) = (X_t(\omega))_{t \in [0,1]}. \end{array}$$

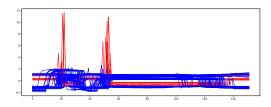
- Data are basically parametric curves, *i.e.*, data collected in quasi-real time.
- In practice, we only have access to a finite number of arguments/times, S_n = {X_i(t₁),..., X_i(t_p), 1 ≤ i ≤ n} such that 0 ≤ t₁ < ··· < t_p ≤ 1.
- First step: reconstruct a functional object from time-series either by interpolation or basis decomposition.



Anomaly Detection and functional data (Hubert et al,. 2015)

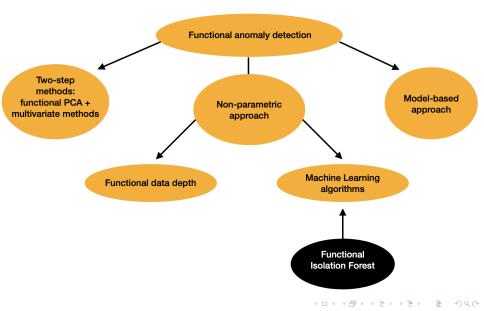


Isolated anomalies



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Context of FAD contributions



Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Contents

Introduction

The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

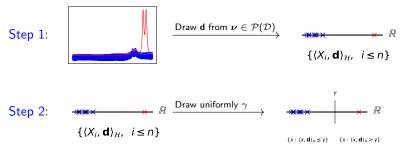
- ▶ $X_1, ..., X_n$ are random variables in Hilbert space \mathcal{H} and $\mathcal{D} \subset \mathcal{H}$.
- This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

X₁,..., X_n are random variables in Hilbert space H and D ⊂ H.
 This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

X₁,..., X_n are random variables in Hilbert space H and D ⊂ H.
 This ensemble learning algorithm builds a collection of binary tree based on a recursive and randomized tree-structured partitioning procedure.

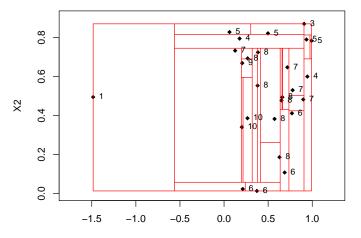


The trick: an anomaly should be isolated faster than normal data.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Illustration: Isolation tree

Isolation tree, split 25



X1

- If a node (j, k) is non terminal, it is split in three steps as follows:
 - 1. Choose a Split function ${\bf d}$ according to the probability distribution ${\boldsymbol \nu}$ on ${\mathcal D}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If a node (j, k) is non terminal, it is split in three steps as follows:
 - 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
 - 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If a node (j, k) is non terminal, it is split in three steps as follows:
 - 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
 - 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

3. Form the children subsets

$$\begin{aligned} \mathcal{C}_{j+1,2k} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} \leq \gamma \}, \\ \mathcal{C}_{j+1,2k+1} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} > \gamma \}. \end{aligned}$$

as well as the children training datasets

$$\mathcal{S}_{j+1,2k} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k}$$
 and $\mathcal{S}_{j+1,2k+1} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k+1}$.

- If a node (j, k) is non terminal, it is split in three steps as follows:
 - 1. Choose a Split function **d** according to the probability distribution ν on \mathcal{D} .
 - 2. Choose randomly and uniformly a Split value γ in the interval

$$\left[\min_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}},\max_{\mathbf{x}\in\mathcal{S}_{j,k}}\langle\mathbf{x},\mathbf{d}\rangle_{\mathcal{H}}\right],$$

3. Form the children subsets

$$\begin{aligned} \mathcal{C}_{j+1,2k} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} \leq \gamma \}, \\ \mathcal{C}_{j+1,2k+1} &= \mathcal{C}_{j,k} \cap \{ \mathbf{x} \in \mathcal{H} : \langle \mathbf{x}, \mathbf{d} \rangle_{\mathcal{H}} > \gamma \}. \end{aligned}$$

as well as the children training datasets

$$\mathcal{S}_{j+1,2k} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k}$$
 and $\mathcal{S}_{j+1,2k+1} = \mathcal{S}_{j,k} \cap \mathcal{C}_{j+1,2k+1}$.

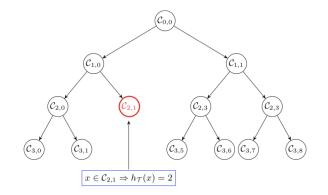
Stop when only one observation is in each node: isolation.

Anomaly score prediction

• One may then define the piecewise constant function $h_{\tau} : \mathcal{H} \to \mathbb{N}$ by: $\forall \mathbf{x} \in \mathcal{H},$

 $h_{\tau}(\mathbf{x}) = j$ if and only if $x \in \mathcal{C}_{j,k}$ and $\mathcal{C}_{j,k}$ is associated to a terminal node.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで



Anomaly score prediction

Anomaly score calculation for observation x:

- 1. For each isolation tree $i \in \{1, ..., N\}$, locate x in a terminal node and calculate the depth of this node $h_i(x)$.
- 2. Attribute the anomaly score:

$$s_n(\mathbf{x}) = 2^{-\frac{1}{N \cdot c(n)} \sum_{i=1}^N h_i(\mathbf{x})},$$

with $c(n) = 2H(n-1) - \frac{2(n-1)}{n}$ where H(k) is the harmonic number and can be estimated by $\ln(k) + 0.5772156649$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Anomaly score prediction

Anomaly score calculation for observation x:

- 1. For each isolation tree $i \in \{1, ..., N\}$, locate x in a terminal node and calculate the depth of this node $h_i(x)$.
- 2. Attribute the anomaly score:

$$s_n(\mathbf{x}) = 2^{-\frac{1}{N \cdot c(n)} \sum_{i=1}^N h_i(\mathbf{x})}$$

with $c(n) = 2H(n-1) - \frac{2(n-1)}{n}$ where H(k) is the harmonic number and can be estimated by $\ln(k) + 0.5772156649$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Score behavior:

Contents

Introduction

The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Parameters of FIF

► Classical parameters of ISOLATION FOREST :

The number of trees, the size of the subsample and the height limit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- New parameters due to the functional setup :
 - 1. The dictionary \mathcal{D} .
 - 2. The probability measure $\boldsymbol{\nu}$.
 - 3. The scalar product $\langle ., . \rangle_{\mathcal{H}}$.

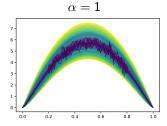
The role of the scalar product

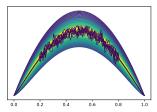
Compromise between both location and shape :

$$\langle \mathbf{f}, \mathbf{g} \rangle := lpha imes rac{\langle \mathbf{f}, \mathbf{g}
angle_{L_2}}{||\mathbf{f}|| \, ||\mathbf{g}||} + (1 - lpha) imes rac{\langle \mathbf{f}', \mathbf{g}'
angle_{L_2}}{||\mathbf{f}'|| \, ||\mathbf{g}'||}, \quad lpha \in [0, 1],$$

Example on a toy dataset :

- 90 curves defined by $\mathbf{x}(t) = 30(1-t)^q t^q$ with q equispaced in [1, 1.4],
- ▶ 10 abnormal curves defined by $\mathbf{x}(t) = 30(1-t)^{1.2}t^{1.2}$ noised by $\varepsilon \sim \mathcal{N}(0, 0.3^2)$ on the interval [0.2, 0.8].





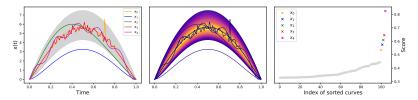
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ability to detect a variety of anomalies

Sobolev inner product: $\langle ., . \rangle_{W_{1,2}}$.

• Gaussian wavelets dictionary $d_{\theta,\sigma}(t) = \frac{2}{\sqrt{3\sigma}\pi^{1/4}} \left(1 - \left(\frac{t-\theta}{\sigma}\right)^2\right) \exp\left(\frac{-(t-\theta)^2}{2\sigma^2}\right)$.

Uniform measure ν.



Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Performance on real datasets (1)

FIF with 4 setups (Dictionary+scalar product):

- Dyadic indicator (DI)+L2
- Cosine $(Cos)+L_2$
- Cosine (Cos)+Sobolev
- Dataset itself (Self)+L2

Competitors:

- Isolation Forest, Local Outlier Factor, One-class SVM after dimension reduction by FPCA.
- ▶ *fHD_{RP}* : Random projection method with functional Halspace depth.

▶ fSDO : Functional Stahel-Donoho Outlyingness.

Performance on real datasets (2)

Methods :	DI_{L_2}	Cos _{Sob}	Cos_{L_2}	$Self_{L_2}$	IF	LOF	OCSVM	fHD _{RP}	fSDO
Chinatown	0.93	0.82	0.74	0.77	0.69	0.68	0.70	0.76	0.98
Coffee	0.76	0.87	0.73	0.77	0.60	0.51	0.59	0.74	0.67
ECGFiveDays	0.78	0.75	0.81	0.56	0.81	0.89	0.90	0.60	0.81
ECG200	0.86	0.88	0.88	0.87	0.80	0.80	0.79	0.85	0.86
Handoutlines	0.73	0.76	0.73	0.72	0.68	0.61	0.71	0.73	0.76
SonyRobotAl1	0.89	0.80	0.85	0.83	0.79	0.69	0.74	0.83	0.94
SonyRobotAl2	0.77	0.75	0.79	0.92	0.86	0.78	0.80	0.86	0.81
StarLightCurves	0.82	0.81	0.76	0.86	0.76	0.72	0.77	0.77	0.85
TwoLeadECG	0.71	0.61	0.61	0.56	0.71	0.63	0.71	0.65	0.69
Yoga	0.62	0.54	0.60	0.58	0.57	0.52	0.59	0.55	0.55
EOGHorizontal	0.72	0.76	0.81	0.74	0.70	0.69	0.74	0.73	0.75
CinECGTorso	0.70	0.92	0.86	0.43	0.51	0.46	0.41	0.64	0.80
ECG5000	0.93	0.98	0.98	0.95	0.96	0.93	0.95	0.91	0.93

Table: AUC of different anomaly detection methods calculated on the test set. Bold numbers correspond to the best result.

Contents

Introduction The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Extension to multivariate functional data

FIF can be easily extended to the multivariate functional data, *i.e.* when the quantity of interest lies in \mathbb{R}^d for each moment of time:

$$egin{aligned} & x: [0,1] \longrightarrow \mathbb{R}^d \ & t \longmapsto ig((x^1(t),\ \ldots,\ x^d(t)ig) \end{aligned}$$

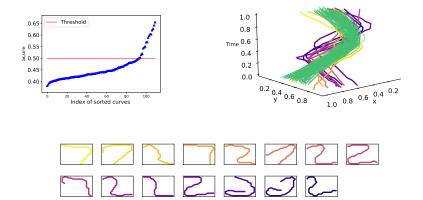
Coordinate-wise sum of the d corresponding scalar products:

$$\langle \mathbf{f}, \mathbf{g}
angle_{L_2^{\otimes d}} := \sum_{i=1}^d \langle f^{(i)}, g^{(i)}
angle_{L_2}$$

Dictionaries : Composed by univariate function on each axis, multivariate wavelets, multivariate Brownian motion ...

Example with MNIST dataset

We extract the digits' contours and obtain bivariate functional curves from MNIST dataset. Each digit is transformed into a curve in $(L_2([0,1]) \times L_2([0,1]))$ using length parametrization on [0,1].



Contents

Introduction

The task of anomaly detection Isolation forest AD in functional framework

Functional Isolation Forest

The method FIF parameters

Real data benchmarking

Extension of FIF Connection to data depth

Connection to data depth and supervised classification

• One may define a functional depth by $D_{FIF}(x; S) = 1 - s_n(x; S)$.

Assume that we have a training classification dataset of q classes $S = S^1 \cup ... \cup S^q$.

Low dimensional representation based on depth-based map can be defined by

$$\mathbf{x}\mapsto \phi(\mathbf{x})=\left(D_{\textit{FIF}}(\mathbf{x};\mathcal{S}^1),...,D_{\textit{FIF}}(\mathbf{x};\mathcal{S}^q)
ight)\in [0,1]^q$$
 .

One may define a DD-plot classifier by using a classifier on the low dimension representation of the functional dataset.

Example of depth map on MNIST dataset

 ${\cal S}$ is constructed by taking 100 digits from class 1, 100 from class 5 and 100 from class 7.

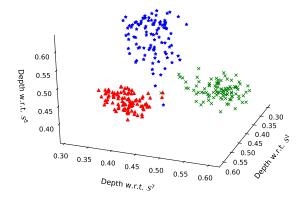


Figure: Depth space embedding of the three digits (1, 5 and 7) of the MNIST dataset.

(日)

Conclusion

New anomaly detection algorithm for functional data:

Great flexibility but dictionaries (and scalar product) are tricky to choose in an unsupervised setting.

- Low complexity and memory requierement.
- Lack of theoretical garanties!

STAERMAN, G., MOZHAROVSKYI, P., CLÉMENÇON, S., AND D'ALCHÉ-BUC, F. Functional Isolation Forest. ACML 2019.

All codes are available at: https://github.com/guillaumestaermanML/FIF. Thank you for your attention!

Questions?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @