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A real task
Regard two measurements during a test in a production process:
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Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.
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Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.

For new data, determine:
▶ Whether new observations are normal data or anomalies?
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Given training data, polluted or not with anomalies:
▶ detect anomalies in the given data.

For new data, determine:
▶ Whether new observations are normal data or anomalies?



Multivariate framework

▶ A training data set:

X = {x1, ..., xn} ⊂ Rd

of observations in the d-dimensional Euclidean space.

▶ Typical example: a table from a data base, with lines being
observations (=individuals, items,...).

▶ Construct a decision function:

Rd → {−1,+1} : x 7→ g(x) ,

which attributes to any (possible) x ∈ Rd a label whether it is an
anomaly (e.g., +1) or a normal observation (e.g., −1).

▶ It is more useful to provide an ordering on Rd :

Rd → R : x 7→ g(x) ,

such that abnormal observations obtain higher anomaly score.
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Anomaly Detection (AD)
▶ What is Anomaly detection?

▶ Identify unusual patterns that do not conform to expected behavior.

▶ Applications : Network intrusions, credit card fraud detection,
insurance, finance, military surveillance, predictive maintenance,
medical monitoring.
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Unsupervised Anomaly Detection

Unsupervised Anomaly Detection: data are unlabelled. We suppose
that all data come from the same distribution µ and that anomalies are
very rare, i.e., belongs to the low density regions.

If µ admits a density f w.r.t. a measure ρ, the goal of anomaly detection
can be formulated as the recovery of upper-level sets {x : f (x) ≥ q},
q ≥ 0.



Statistical inference

▶ Plug-in method : Estimation by {x : f̂ (x) ≥ q}.

▶ Direct methods : Build a score function s : X → R such that
{x : s(x) ≥ q} is close to {x : f (x) ≥ q}.
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Unsupervised AD in practice

▶ How to do it in practice?

Step 1. Learn a score function s : X → R which assigns a score to each data.

Step 2. Find the best treshold to construct a decision function which separates
”normal” and ”abnormal” data and then induces two regions.

Step 3. Detect anomalies among new observations.
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Isolation forest (Liu, Ting, Zhou; 2008)

▶ Isolation forest (Liu, Ting, Zhou; 2008) is an anomaly detection
method inherited from the famous random forest algorithm (Breiman,
2001).

▶ Since no supervised feedback is given, isolation forest is based on
purely random (uniform) variable-based partitioning.

▶ Main idea: Outlying observations are isolated faster.

▶ Tree-kind partitioning is done until “full isolation”: outlying
observations will have smaller depth (on an average) in the isolation
tree.

▶ A monotone transform is usually applied to the aggregated estimate.

▶ To reduce both masking effect and computation cost, small-size
sub-sampling is used instead of bootstrap.
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
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Isolation forest (Liu, Ting, Zhou; 2008)
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Isolation forest (Liu, Ting, Zhou; 2008)
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Isolation tree, split 19

X1

X
2

6

88

7

6

8

8

8

8

10
10

98
7

6 6

1



Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Isolation tree, split 24

X1

X
2

4

3
5 5

4

7
7

6

88

7

6

8

8

8

8

10
10

98
7

6 6

1



Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Isolation tree
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Isolation forest (Liu, Ting, Zhou; 2008)
Illustration: Anomaly score
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Functional Data Framework
▶ Let X be a functional random variable that takes its values in a

functional space and X1, . . . ,Xn be an i.i.d. sample from X :

X : (Ω, A, P) −→ H([0, 1])
ω 7−→ X (ω) = (Xt(ω))t∈[0,1].

▶ Data are basically parametric curves, i.e., data collected in quasi-real
time.

▶ In practice, we only have access to a finite number of
arguments/times, Sn = {Xi (t1), . . . ,Xi (tp), 1 ≤ i ≤ n} such that
0 ≤ t1 < · · · < tp ≤ 1.

▶ First step: reconstruct a functional object from time-series either by
interpolation or basis decomposition.
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Anomaly Detection and functional data (Hubert et al,.
2015)

Shape anomalies Shift anomalies
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Functional Isolation Forest

▶ X1, . . . ,Xn are random variables in Hilbert space H and D ⊂ H.

▶ This ensemble learning algorithm builds a collection of binary tree
based on a recursive and randomized tree-structured partitioning
procedure.

Step 1:
Draw d from ν ∈ P(D)−−−−−−−−−−−−−→

{ Xi, d , i n}

Step 2:

{ Xi, d , i n}

Draw uniformly γ−−−−−−−−−−−→

{x : x, d } {x : x, d > }

▶ The trick: an anomaly should be isolated faster than normal data.
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Functional Isolation Forest
Illustration: Isolation tree
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Children node construction in a functional isolation tree

If a node (j , k) is non terminal, it is split in three steps as follows:

1. Choose a Split function d according to the probability distribution ν
on D.

2. Choose randomly and uniformly a Split value γ in the interval[
min
x∈Sj,k

⟨x,d⟩H, max
x∈Sj,k

⟨x,d⟩H
]
,

3. Form the children subsets

Cj+1,2k = Cj,k ∩ {x ∈ H : ⟨x,d⟩H ≤ γ},
Cj+1,2k+1 = Cj,k ∩ {x ∈ H : ⟨x,d⟩H > γ}.

as well as the children training datasets

Sj+1,2k = Sj,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj,k ∩ Cj+1,2k+1.

Stop when only one observation is in each node: isolation.
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Anomaly score prediction

▶ One may then define the piecewise constant function hτ : H → N by:
∀x ∈ H,

hτ (x) = j if and only if x ∈ Cj,k and Cj,k is associated to a terminal node.



Anomaly score prediction

Anomaly score calculation for observation x :
1. For each isolation tree i ∈ {1, ...,N}, locate x in a terminal node and

calculate the depth of this node hi (x).
2. Attribute the anomaly score:

sn(x) = 2−
1

N·c(n)
∑N

i=1 hi (x) ,

with c(n) = 2H(n − 1)− 2(n−1)
n where H(k) is the harmonic number

and can be estimated by ln(k) + 0.5772156649.

Score behavior:

▶ when 1
N

∑N
i=1 hi (x) → c(n), sn(x) → 0.5,

▶ when 1
N

∑N
i=1 hi (x) → 0, sn(x) → 1,

▶ when 1
N

∑N
i=1 hi (x) → n − 1, sn(x) → 0.
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Parameters of FIF

▶ Classical parameters of Isolation Forest :
▶ The number of trees, the size of the subsample and the height limit.

▶ New parameters due to the functional setup :

1. The dictionary D.

2. The probability measure ν.

3. The scalar product ⟨., .⟩H.



The role of the scalar product

▶ Compromise between both location and shape :

⟨f, g⟩ := α× ⟨f, g⟩L2

||f|| ||g||
+ (1− α)× ⟨f ′, g′⟩L2

||f ′|| ||g′||
, α ∈ [0, 1] ,

Example on a toy dataset :
▶ 90 curves defined by x(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

▶ 10 abnormal curves defined by x(t) = 30(1− t)1.2t1.2 noised by ε ∼ N (0, 0.32)
on the interval [0.2, 0.8].
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Ability to detect a variety of anomalies

▶ Sobolev inner product: ⟨., .⟩W1,2 .

▶ Gaussian wavelets dictionary dθ,σ (t) = 2√
3σπ1/4

(
1 −

(
t−θ
σ

)2)
exp

(
−(t−θ)2

2σ2

)
.

▶ Uniform measure ν.
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Performance on real datasets (1)

▶ FIF with 4 setups (Dictionary+scalar product):
▶ Dyadic indicator (DI)+L2

▶ Cosine (Cos)+L2

▶ Cosine (Cos)+Sobolev
▶ Dataset itself (Self)+L2

Competitors:

▶ Isolation Forest,Local Outlier Factor , One-class SVM
after dimension reduction by FPCA.

▶ fHDRP : Random projection method with functional Halspace depth.

▶ fSDO : Functional Stahel-Donoho Outlyingness.



Performance on real datasets (2)

Methods : DIL2 CosSob CosL2 SelfL2 IF LOF OCSVM fHDRP fSDO
Chinatown 0.93 0.82 0.74 0.77 0.69 0.68 0.70 0.76 0.98
Coffee 0.76 0.87 0.73 0.77 0.60 0.51 0.59 0.74 0.67

ECGFiveDays 0.78 0.75 0.81 0.56 0.81 0.89 0.90 0.60 0.81
ECG200 0.86 0.88 0.88 0.87 0.80 0.80 0.79 0.85 0.86

Handoutlines 0.73 0.76 0.73 0.72 0.68 0.61 0.71 0.73 0.76
SonyRobotAI1 0.89 0.80 0.85 0.83 0.79 0.69 0.74 0.83 0.94
SonyRobotAI2 0.77 0.75 0.79 0.92 0.86 0.78 0.80 0.86 0.81
StarLightCurves 0.82 0.81 0.76 0.86 0.76 0.72 0.77 0.77 0.85
TwoLeadECG 0.71 0.61 0.61 0.56 0.71 0.63 0.71 0.65 0.69

Yoga 0.62 0.54 0.60 0.58 0.57 0.52 0.59 0.55 0.55
EOGHorizontal 0.72 0.76 0.81 0.74 0.70 0.69 0.74 0.73 0.75
CinECGTorso 0.70 0.92 0.86 0.43 0.51 0.46 0.41 0.64 0.80
ECG5000 0.93 0.98 0.98 0.95 0.96 0.93 0.95 0.91 0.93

Table: AUC of different anomaly detection methods calculated on the test set.
Bold numbers correspond to the best result.
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Extension to multivariate functional data

FIF can be easily extended to the multivariate functional data, i.e. when
the quantity of interest lies in Rd for each moment of time:

x : [0, 1] −→ Rd

t 7−→
(
(x1(t), . . . , xd(t)

)
▶ Coordinate-wise sum of the d corresponding scalar products:

⟨f, g⟩L⊗d
2

:=
d∑

i=1

⟨f (i), g (i)⟩L2

▶ Dictionaries : Composed by univariate function on each axis,
multivariate wavelets, multivariate Brownian motion ...



Example with MNIST dataset

We extract the digits’ contours and obtain bivariate functional curves from
MNIST dataset. Each digit is transformed into a curve in
(L2([0, 1])× L2([0, 1])) using length parametrization on [0, 1].
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Connection to data depth and supervised classification

▶ One may define a functional depth by DFIF (x ;S) = 1− sn(x ;S).

Assume that we have a training classification dataset of q classes
S = S1 ∪ ... ∪ Sq.

▶ Low dimensional representation based on depth-based map can be
defined by

x 7→ ϕ(x) =
(
DFIF (x;S1), ...,DFIF (x;Sq)

)
∈ [0, 1]q .

▶ One may define a DD-plot classifier by using a classifier on the low
dimension representation of the functional dataset.



Example of depth map on MNIST dataset
S is constructed by taking 100 digits from class 1, 100 from class 5 and
100 from class 7.
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Figure: Depth space embedding of the three digits (1, 5 and 7) of the MNIST
dataset.



Conclusion

▶ New anomaly detection algorithm for functional data:

▶ Great flexibility but dictionaries (and scalar product) are tricky to
choose in an unsupervised setting.

▶ Low complexity and memory requierement.

▶ Lack of theoretical garanties!

Staerman, G., Mozharovskyi, P., Clémençon, S., and
d’Alché-Buc, F. Functional Isolation Forest. ACML 2019.

All codes are available at:
https://github.com/guillaumestaermanML/FIF.

https://github.com/guillaumestaermanML/FIF


Thank you for your attention!

Questions?
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