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Some Quotes: 
 
All models should be as simple as possible...but no simpler 

          
       - Albert Einstein 

 
All models are wrong...but some are useful 
 

           - George Box 
 
When all you have is a hammer everything looks like a nail 
 

          - Abraham Maslow 
 
If I had only one hour to live, I’d spend it at a statistics 
seminar…that way it would seem longer 

                              
      - Anonymous 

 



What I want to Cover With You Today: 
   • Binary Logistic Regresion 
   • Assessing Calibration 

   • Hosmer-Lemeshow GOF Test (g = 10 groups) 
                    Problem:  Under large sample sizes, the test  
                       tends to reject models that deviate  
                       only slightly from the true model. 
                       Models that deviate slightly from the  
                       true model are acceptable in practice  
                       and ideally would not be rejected. 

       Possible Solution 1: To reduce power, some have 
            proposed applying the test to smaller subsets 
            of data but the method has not been formalized. 

     Possible Solution 2:Increase the number of groups 
            when n is large 

   • Calibration Bands 











Let us now go back to the AGE/CHD data.  Use of a logistic regression  
routine, such as the one in Stata, produces the following output: 

. logit CHD AGE

Iteration 0:   log likelihood = -68.331491
Iteration 1:   log likelihood = -54.170558
Iteration 2:   log likelihood = -53.681645
Iteration 3:   log likelihood = -53.676547
Iteration 4:   log likelihood = -53.676546

Logit estimates                                   Number of obs   =        100
                                                  LR chi2(1)      =      29.31
                                                  Prob > chi2     =     0.0000
Log likelihood = -53.676546                       Pseudo R2       =     0.2145 
 
------------------------------------------------------------------------------ 
     CHD |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     AGE |   .1109211   .0240598      4.610   0.000       .0637647    .1580776 
   _cons |  -5.309453   1.133655     -4.683   0.000      -7.531376   -3.087531 
------------------------------------------------------------------------------ 































Example: ICU data. 

. logit STA AGE CAN _ISYSGP_4 TYP LOCD 
 
Iteration 0:   log likelihood = -100.08048   
Iteration 1:   log likelihood = -70.385527   
Iteration 2:   log likelihood = -67.395341   
Iteration 3:   log likelihood = -66.763511   
Iteration 4:   log likelihood = -66.758491   
Iteration 5:   log likelihood = -66.758489   
 
Logistic regression                               Number of obs   =        200 
                                                  LR chi2(5)      =      66.64 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -66.758489                       Pseudo R2       =     0.3330 
 
------------------------------------------------------------------------------ 
         STA |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         AGE |    .040628   .0128617     3.16   0.002     .0154196    .0658364 
         CAN |   2.078751   .8295749     2.51   0.012     .4528141    3.704688 
   _ISYSGP_4 |   -1.51115   .7204683    -2.10   0.036    -2.923242   -.0990585 
         TYP |   2.906679   .9257469     3.14   0.002     1.092248     4.72111 
        LOCD |   3.965535   .9820316     4.04   0.000     2.040788    5.890281 
       _cons |  -6.680532   1.320663    -5.06   0.000    -9.268984    -4.09208 
------------------------------------------------------------------------------ 



. lfit, group(10) table 
 
Logistic model for STA, goodness-of-fit test 
 
  (Table collapsed on quantiles of estimated probabilities) 
  +--------------------------------------------------------+ 
  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     1 | 0.0105 |     0 |   0.1 |    20 |  19.9 |    20 | 
  |     2 | 0.0290 |     0 |   0.4 |    20 |  19.6 |    20 | 
  |     3 | 0.0492 |     2 |   1.0 |    21 |  22.0 |    23 | 
  |     4 | 0.0666 |     0 |   1.0 |    17 |  16.0 |    17 | 
  |     5 | 0.1083 |     2 |   1.8 |    19 |  19.2 |    21 | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     6 | 0.1674 |     2 |   2.6 |    17 |  16.4 |    19 | 
  |     7 | 0.2254 |     5 |   3.9 |    15 |  16.1 |    20 | 
  |     8 | 0.3171 |     4 |   5.5 |    16 |  14.5 |    20 | 
  |     9 | 0.4554 |     8 |   7.6 |    12 |  12.4 |    20 | 
  |    10 | 0.9623 |    17 |  16.1 |     3 |   3.9 |    20 | 
  +--------------------------------------------------------+ 
       number of observations =       200 
             number of groups =        10 
      Hosmer-Lemeshow chi2(8) =         4.00 
                  Prob > chi2 =         0.8570 
. lfit 
Logistic model for STA, goodness-of-fit test 
 
       number of observations =       200 
 number of covariate patterns =       135 
            Pearson chi2(129) =        79.23 
                  Prob > chi2 =         0.9998 



Because the distribution of      depends on m-asymptotics, the  
appropriateness of the p-value will depend on the estimated expected 
frequencies being large enough to employ this theory.    
 
If one is concerned about the magnitude of the expected frequencies, 
selected adjacent columns may be combined to increase the size of 
the expected frequencies.  Unfortunately, when this is done the power 
of the test is reduced since the degrees of freedom are reduced. 
 
When      is calculated from fewer than 6 groups, it will almost always 
indicate that the model fits.  Thus, try to use with as many groups as 
possible. 
 
The problem is that, when working with really large data sets, the GOF 
test may be too powerful, indicating that the model is poorly calibrate 
when it is not. 

  Ĉ

  Ĉ



"Standardizing The Power Of The Hosmer-Lemeshow  
Goodness Of Fit Test In Large Data Sets". 
       Paul, Prabasaj, Michael L. Pennell, and Stanley Lemeshow. 
       Statistics in Medicine. 32.1 (2013): 67-80.  

In this paper we found that the power of the Hosmer-Lemeshow test 
increased with sample size and decreased with the number of groups. 
 
Previous work has shown that the Hosmer-Lemeshow test works best  
when there are at least five observations per group, and when the  
number of groups is greater than or equal to six.  
 
The test often breaks down as well when the event is rare.  
 
Taking all of these into account, this paper listed recommendations for  
what group sizes to use in various scenarios.  



With sample sizes up to 1000, a group size of ten is recommended.  
This often keeps the power below 70% which, in some scenarios, may  
still be too powerful.  
 
For sample sizes between 1,000 and 25,000 observations, we  
recommend using the following equation to determine the number of  
groups, g, to use:  
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where n is the sample size and m is the number of successes.  



This formula is justified by noting that power was kept relatively  
consistent to a benchmark used with a sample size of 1000 and a  
group size of 10 in our simulation results when the equation  

  
g = 2 + 8
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was used. 
 
Moreover, the assumption is made that the number of groups taken is  
never below 10. 
 
It is also noted that this equation breaks down as the sample size  
becomes smaller, as it is recommended to have at least five  
observations per group.  
 
Finally, for sample sizes greater than 25,000, this equation breaks down  
as well, as the equation defaults to the number of successes  
(m) divided by two.  
 
This results in a test that is too powerful.  



Applying the formula for g on the previous slide: 
   • for n < 1000, use g = 10 
   • for n = 2000, use g = 34 
   • for n = 4000, use g = 130 
   • for n > 25,000, we can’t apply this rule as the formula breaks down 
 
 
 For large data sets, we have begun to run the H-L test repeatedly using  
differing numbers of groups to see if good fit is maintained over the  
range of g. 



e.g., ICU model with 37,913 patients in developmental data set 
and 4,212 patients in the validation data set 
Developmental dataset
   Area under the ROC curve = 0.771
   Hosmer-Lemeshow goodness of fit test
   Obs (N)    Groups       DoF   p-value
    37,913        10         8    0.6599
    37,913        20        18    0.1529
    37,913        30        28    0.6417
    37,913        40        38    0.2924
    37,913        50        48    0.6463
    37,913        60        58    0.6729
    37,913        70        68    0.4528
    37,913        80        78    0.4462
    37,913        90        88    0.3036
    37,913       100        98    0.3119
    37,913       150       148    0.1687
    37,913       200       198    0.2857
    37,913       250       248    0.0580
    37,913       300       298    0.5931
    37,913       350       348    0.1107
    37,913       400       398    0.4498
    37,913       450       448    0.1305
    37,913       500       498    0.5497
    37,913       550       548    0.1334
    37,913       600       598    0.4071
    37,913       650       648    0.3702
    37,913       700       698    0.3172
    37,913       750       748    0.5634
    37,913       800       798    0.3019
    37,913       850       848    0.7065
    37,913       900       898    0.6207
    37,913       950       948    0.8317
    37,913      1000       998    0.1523
 

Validation dataset
   Area under the ROC curve = 0.779
   Hosmer-Lemeshow goodness of fit test
   Obs (N)    Groups       DoF   p-value
     4,212        10        10    0.1615
     4,212        20        20    0.4069
     4,212        30        30    0.1238
     4,212        40        40    0.4082
     4,212        50        50    0.0211
     4,212        60        60    0.1718
     4,212        70        70    0.2039
     4,212        80        80    0.2201
     4,212        90        90    0.1922
     4,212       100       100    0.2597
     4,212       110       110    0.7880
     4,212       120       120    0.3073
     4,212       130       130    0.2000
     4,212       140       140    0.7009
     4,212       150       150    0.5995
 



A strategy for evaluating goodness-of-fit for a logistic regression model  
using the Hosmer-Lemeshow test on samples from a large data set 
Adam Bartley, Michael Pennell, Stanley Lemeshow, and Gary Phillips 

 Purpose of Research 
•Evaluate, through a simulation study, a subsampling approach for assessing  
  goodness-of-fit in large data sets. 
•Use results of simulations to make recommendations for implementing a subsampling  
  approach. 
 
 
 Simulation Methods 
•Data were simulated under 5 different scenarios (Table 1).  
•Except for Scenario 1, each data set was analyzed using a model that differed  
  from the truth (Table 1). 
•Scenario 2: true and fitted models were virtually identical. 
•Scenario 4: small difference in the tails. 
•The H-L test was implemented on 100 subsets of size 1,000 and 5,000. 
•Number of significant tests (p-value < 0.05) enumerated. 
•Process repeated for 100 data sets/scenario. 
 
 





Results 
•Samples frequently had > 5 significant subsets; even if correct model was fit 
(Scenario 1). 
•> 20 significant subsets was only common when true and fitted models differed 
greatly (Scenarios 3 and 5). 
•> 10 subsets uncommon when true and fitted models were the same or almost 
identical (Scenarios 1, 2). 
•Inadequate power to detect poorly fit models (Scenarios 3 and 5) when subset size  
< 5,000. 
•True model rejected too often when N < 100,000. 
 
 
 
 
 Recommendations 
•For N ≥ 100,000, draw 100 subsets of size 5,000. 
•Conclude lack-of-fit if H-L test is significant in > 10 subsets. 
 



“A new calibration test and a reappraisal of the calibration belt for the  
assessment of prediction models based on dichotomous outcomes” 

Giovanni Nattino, Stefano Finazzi and Guido Bertolini 
Statistics in Medicine 2014, 33 2390–2407 

Recall:   

   
logit Pr y =1x( )( ) = logit π x( )( ) = g x( ) = β̂
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For each subject, i = 1,2,…,n ,  we can compute: 

  

• the logit   ĝ
i

x
i( )

• the probability  π̂
i
= e ĝi xi( )

1+e ĝi xi( )

Calibration is the agreement between      y i
 and  π̂

i



The Calibration Plot 



The Calibration Plot 



Now that we’ve fit our model, 
   • we have 
 
 
                       for each subject. 
 
This relationship can be expressed as 

  

logit Pr Y =1 π̂( ){ } = α
0
+α

1
logit π̂( ){ } = α

0
+α

1
ĝ{ } = logit Pr Y =1ĝ( ){ }

so, if α
0
= 0 and α

1
=1

  

logit Pr Y =1 π̂( ){ } = 0 +1 logit π̂( ){ } = logit π̂( )

⇒ Pr Y =1( ) π̂( ) = π̂

The Calibration Curve: 

  
π̂

i
= Pr y

i
=1x

i( )  and ĝ
i
= g x

i( )

 

If the data fit perfectly, then α̂
0
≡ 0 and α̂

1
≡1

   but it certainly doesn't have to be a linear relationship



   

Why not:

   logit Pr Y =1( ) ĝ{ } = α
0
+α

1
ĝ +α

2
ĝ 2 +! +α

m
ĝ m

What should we choose for m ?
     • if too small ⇒  too simplistic
     • if too large ⇒  estimation of useless parameters
a forward selection algorithm is used

e.g., ICU data 

  

m = 2 : logit Pr Y =1( ) ĝ{ } = 0.117 + 0.917ĝ + 0.076ĝ 2

                                                                        L̂
2
= −66.22016

m = 3 : logit Pr Y =1( ) ĝ{ } = 0.116 + 0.916ĝ + 0.076ĝ 2 + 0.00019ĝ 3

                                                                        L̂
3
= −66.22015

Likelihood Ratio Test:  H
0

:α
3
= 0  vs  H

a
:α

3
≠ 0

                             G = 0.00002,     p = 0.996    NS   ⇒ m = 2



  

so using the m = 2 model:  

                logit Pr Y =1( ) ĝ{ } = 0.117 + 0.917ĝ + 0.076ĝ 2  

we define the calibration curve as:

Pr Y =1 π̂( ) = f π̂( ) = e
0.117+0.917logit π̂( )+0.076 logit π̂( )( )2

1+e
0.117+0.917logit π̂( )+0.076 logit π̂( )( )2



  

so the best model appears to be the m = 2 model:  

                logit Pr Y =1( ) ĝ{ } = 0.117 + 0.917ĝ + 0.076ĝ 2  

If the calibration were perfect:  α
0
= 0, α

1
=1, α

2
= 0,

        since then,  logit Pr Y =1( ) ĝ{ } = 0 +1× ĝ + 0 = ĝ

So we would like to test H
0

:  α
0
= 0 and α

1
=1 and α

2
= 0

                                    vs H
a

:  α
0
≠ 0 or α

1
≠1 or α

2
≠ 0

The test:
   • is based on a likelihood ratio statistic;
   • accounts for the iterative process to define m.

G =1.08,   p − value = 0.299

        Recall: Hosmer-Lemeshow p-value = 0.857.



The calibration belt 
ICU Data 

. calibrationbelt

Expected 

Observed 



Example of a Poorly Calibrated Model: 



Calibration Belt for this model: 



So, as we’ve seen, the calibration belt can assess the  
goodness of fit of a model without any categorization. 
 
The calibration belt is an informative tool to detect deviations from the 
perfect fit of a model. 
 
The information provided helps improving the goodness of fit of logistic 
regression models. 
 
 
 
Let us return to our ongoing modeling efforts. 



Calibration Belt: 
  Developmental 



Calibration Belt: 
  Validation 





Thank you! 


