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Some Quotes:
All models should be as simple as possible...but no simpler
- Albert Einstein
All models are wrong...but some are useful
- George Box
When all you have is a hammer everything looks like a nail
- Abraham Maslow

If I had only one hour to live, I'd spend it at a statistics
seminar..that way it would seem longer

- Anonymous



What I want to Cover With You Today:
- Binary Logistic Regresion
- Assessing Calibration
- Hosmer-Lemeshow GOF Test (g = 10 groups)
Problem: Under large sample sizes, the test
tends to reject models that deviate
only slightly from the true model.
Models that deviate slightly from the
true model are acceptable in practice
and ideally would not be rejected.
Possible Solution 1: To reduce power, some have
proposed applying the test to smaller subsets
of data but the method has not been formalized.
Possible Solution 2:Increase the number of groups
when n is large
- Calibration Bands



LOGISTIC REGRESSION ANALYSIS

GOAL: To find the best fitting, simplest, model possible describing the
relationship between an outcome (dependent or response) variable and
a set of independent (predictor or explanatory) voriawg

or “covariates”.
What distinguishes a logistic regression model from the linear regression

model is that the outcome variable is binary (or dichotomous).



Example:
AGE (yrs) and presence or absence of evidence of significant coronary
heart disease (CHD) for 100 subjects selected to participate in a study.

ID AGE CHD ID AGE CHD ID AGE CHD ID AGE CHD
1 20 O 26 35 O 51 4 1 76 55 1
2 23 O 27 35 O 52 44 1 77 56 1
3 24 O 28 36 O 53 45 O 78 56 1
4 25 O 29 36 1 54 45 1 79 56 1
5 25 1 30 36 O 55 46 O 80 57 O
6 26 0 31 37 O 5 46 1 81 57 O
7 26 0 32 37 1 57 47 O 82 57 1
8 28 O 33 37 O 58 47 O 83 57 1
9 28 O 34 38 O 59 47 1 84 57 1
10 29 O 35 38 O 60 48 O 8 57 1
11 30 O 36 39 O 61 48 1 8 58 O
12 30 O 37 39 1 62 48 1 87 58 1
13 30 O 38 40 O 63 49 O 88 588 1
14 30 O 39 40 1 64 49 O 8 59 1
15 30 O 40 41 O 65 49 1 90 59 1
16 30 1 41 41 O 66 50 O 91 60 O
17 32 0 42 42 O 67 50 1 92 60 1
18 32 O 43 42 O 68 51 O 93 61 1
19 33 O 4 42 0 69 52 O 94 62 1
20 33 O 45 42 ] 70 52 1 96 62 1
21 34 O 46 43 O 71 83 1 9 63 1
22 34 O 47 43 O 72 53 1 97 64 O
23 34 1 48 43 1 73 54 1 98 64 1
24 34 O 49 44 O 74 55 O 99 65 1
25 34 O 50 4 O 75 585 1 100 69 1



The model we will use is the logistic regression model. We choose
this because

(1) from a mathematical point of view, it is an extremely flexible
and easily used function and

(2) it lends itself to a biologically meaningful interpretation

Let n(x) = conditional mean of y given x.
Specifically,
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A transformation of = (x) that will be central to our study of
logistic regression is the logit fransformation. This is defined as
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Let us now go back to the AGE/CHD data. Use of a logistic regression
routine, such as the one in Stata, produces the following output:

. logit CHD AGE

Iteration O: log likelihood = -68.331491
Iteration 1: log likelihood = -54.170558
Iteration 2: log likelihood = -53.681645
Iteration 3: log likelihood = -53.676547
Iteration 4: log likelihood = -53.676546
Logit estimates Number of obs = 100
LR chi2 (1) = 29.31
Prob > chi2 = 0.0000
Log likelihood = -53.676546 Pseudo R2 = 0.2145
CHD | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_________ +____________________________________________________________________
AGE | .1109211 .0240598 4.610 0.000 .0637647 .1580776
_cons | -5.309453 1.133655 -4.683 0.000 -7.531376 -3.087531

Hence B, = -5.30950 and B, = 0.11092

AGE
@-531+0.11x ‘(,/””

-5.31+0.11x

fitted values are given by ;’i( x) = ]
=



Assessing the Fit of Logistic Regression Models

After estimates of the coefficients have been obtained, an estimate of
the probability of development of the outcome may be calculated for
each individual in the study.

Now we would like to know how effective the model we have is in
describing the outcome variable. This will be accomplished by comparing
observed outcomes to predicted outcomes based on the logistic model.

This comparison is referred to as assessing “Goodness-of-Fit”.

What does it mean to say that the model “fits”?

let us denote the observed outcomes as y..y,,....Y,

and
let us denote the values predicted by the modelas y .y, .....y



We will conclude that the model fits if

 The summary measures of the distance between y and y are smalll

and if

* The contribution of each pair (y,., )7,.), I =1,...,n to these summary

measures is unsystematic and is smaill relative to the error structure
of the model

Let us concentrate on the first point, computation and evaluation of
overall measures of fit.



Summary Measures of Goodness-of-Fit

summary statistics may not be very specific about individual components
i.e.,
e a small value of one of these statistics does not rule out the possibility
of some substantial deviation from fit for a few subjects.
e a large value for one of these statistics is a clear indication of a substantial
problem with the model.

def: COVARIATE PATTERN - a single set of values for the covariates in a model

- when developing models we assume that each subject is unique in
their configuration of the covariates.
l.e., we assume # covariate patterns = n.

e.g.,
if AGE, RACE, SEX, WT were our variables, then the combination
of these may well result in a unique set of values for each subject.



- once d final model is obtained there may be relatively few variables
in the model, and the nhumber of covariate patterns may be less than n.

e.g.,
if the final model contains only RACE and SEX, each coded
at 2 levels, then there are only 4 possible covariate patterns.

The number of covariate patterns is not an issue in model development.
The df for tests are based on the difference in the number of variables in
competing models, not on the number of covariate patterns. They become
an issue when assessing the fit of a model.

Suppose our fitted model contains p independent variables
X Xyseoes X . Let Jdenote the number of distinct values of x

observed (i.e., covariate patterns). If some subjects have the
same value of x then J < n.



Denote the number of subjects with x = x; by m;, j =1,2,..,J.

J
Clearly, Em,. =N.
j=1

Let y; denote the number of positive responses, y = 1, among the
m; subjects with x = x;.

J
Then Eyl. = n, = total number of subjects with y = 1.
j=1

* The distribution of the goodness-of-fit statistics is obtained by letting n
get large

e If J, the number of covariate patterns, also increases with n, then
each value of m; will tend to be small.



- Distributional results obtained under the condition that only n becomes
large are said to be based on “n- asymptotics”.

- If we fix J < n and let n become large, then each value of m;
will tend to become large.

- Distributional results based on each m;becoming large are said
to be based on “m-asymptotics.”

Initially we will assume that J= n as in the case most frequently occurring.
We expect this to be the case whenever we have some continuous
covariates in the model.



Let us now review several of the available methods.

B°+f’§ixi
e

Let 7, =
] Bo+_§/§,x,- be computed for all individuals, j =1, n.
+e -

Given the values 7,,7,,...,7, , an informally used approach has been
to rank order these n values and establish “deciles of risk”.

l.e.,
1" decile contains the smallest n/10 values of 7

2" decile contains the next smallest n/10 values of 7,

10™ decile contains the largest n/10 values of 7,

If n/10 is not an integer, then the 10 groups may have slightly
different numbers



Now, if the model holds then those who actually develop the outcome
should have high values for 7, . Similarly, those who don’ t develop the
outcome should have low values for 7,

Procedures have been developed for comparing the observed number
with the expected number in each decile.

i.e., for the j/” decile
Oi - E Yi
ieD.

where j=1,...,10 and where D; denotes the n/ 10 individuails in the

j™ decile of risk.



Consider the paiits (O,,E,),....,(0,.,).....(0,.E,,)
One method used has been to plot these pairs

Ei

If the observed and expected
correspond, then the 10 points
should fall on a line with
slope = 1, intercept = 0.

O;

This is an eye-ball method as there is no test statistic associated with it.



Pearson Chi-Square Statistic

In linear regression we were concerned with residuals of the form

n

In logiistic regression fitted values are calculated for each covariate pattern,
and depend on the estimated probability for that covariate pattern

We denote the fitted value, )'/',- , CIS

eﬂ&)

J

mnrz =m .
[1+ed”)

} where Q(K,) is the estimated logit.

For a particular covariate pattern the Pearson residual is defined as

a) o)
] ]

1 Jm (1-4)




The summary statistic based on these residuails is the Pearson chi-square

statistic
J
X* = Er(yi’ﬁi)z

j=1

and X2 ~ (J - (p +1)) if the model holds

Problem: when J = n, the distribution is obtained under n - asymptotics ,
and hence the humber of parameters is increasing at the same rate as
the sample size.

2 .
Hence, p - values calculated for X are incorrect when J=n

Although the p-value may be slightly off, X2 is an effective way to
compdare observed to expected frequencies for each covariate pattern .

This statistic is routinely produced by many software packages.



The Pearson Chi Square Statistic can be thought of as arising from the
following 2xJ table:
Covariate Pattern

1 2 3 J
y=0/o L1lo L1o O,
O

01 02 03

11 12 13 1J
m] \ m2 m3 \ m

E.=ma E =m, (]_ﬁs)

-
I_‘

When chi-square tests are computed from a contingency table the p-values
are correct under the hypothesis when the estimated expected values are

“large” in each cell. This condition will hold under m-asymptotics.

In this table the expected values will always be quite small since the
number of columns, J, increases as n increases.

One way to avoid these difficulties under n-asymptotics is to group the

data in such a way that m-asymptotics can be used. For example,
we may collapse the columns into a fixed humber of groups, g, and
then calculate the observed and expected frequencies.

By fixing the number of columns, the estimated expected frequencies
will become large as nbecomes large. Thus m-asymptotics hold.



The Hosmer-Lemeshow Tests

Let us suppose that J = n. Two grouping strategies are proposed

(1) Collapse the table based on percentiles of the estimated probabilities.
(2) Collapse the table based on fixed values of the estimated probabilities.

With method (1), use of g = 10 groups results in the first group

containing the n/ = n/10 subjects having the smallest estimated

probabilities, and the last group containing the n/ - n/ 10 subjects

having the largest estimated probabilities.

Decile of Risk

Outcome 1 2 3 10
Present (y =1)| 9, O]2|— O, — - Ol,lol_' M
Absent (y = 0)| O, I_\( Oozl_ Ops i e Oo,lol_'no

n/10 \n/lo n/10 \ n/10 n

E, E

03



Then we compute

k=0j=1

This is the Pearson chi-square statistic from the 2xg table of observed
and expected frequencies.

If the 2"? grouping strategy is used, g = 10 groups results in cutpoints

defined at the values % 0’ k=12,...,9 and the groups contain all

subjects with estimated probabilities between adjacent cutpoints

N

€d. 1 group= 0-7 <.1
and group = A=< J'i'i <.2
10" group= 9= <10

Based on extensive simulations, it has been demonstrated that,
when J = n and the fitted logistic model is the correct model, the
distribution of C is well approximated by x’ (g - 2)



Example: ICU daia.

logit STA AGE CAN _ISYSGP_4 TYP LOCD

Iteration O: log likelihood = -100.08048
Iteration 1: log likelihood = -70.385527
Iteration 2: log likelihood = -67.395341
Iteration 3: log likelihood = -66.763511
Iteration 4: log likelihood = -66.7584091
Iteration 5: log likelihood = -66.758489

Logistic regression Number of obs = 200

LR chi2(5) = 66.64

Prob > chi2 = 0.0000

Log likelihood = -66.758489 Pseudo R2 = 0.3330

STA | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

AGE | .040628 .0128617 3.16 0.002 .0154196 .0658364

CAN | 2.078751 .8295749 2.51 0.012 .4528141 3.704688

_ISYSGP 4 | -1.51115 .7204683 -2.10 0.036 -2.923242 -.0990585

TYP | 2.906679 .9257469 3.14 0.002 1.092248 4.72111

LOCD | 3.965535 .9820316 4.04 0.000 2.040788 5.890281

_cons | -6.680532 1.320663 -5.06 0.000 -9.268984 -4.09208



1fit, group(10) table

Logistic model for STA, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

| Group | Prob | Obs 1 |
+ + +
| 1 | 0.0105 | 0 |
| 2 | 0.0290 | 0 |
| 3 | 0.0492 | 2 |
| 4 | 0.0666 | 0 |
| 5 ] 0.1083 | 2 |
| ——==——- +-——————- $-—————- +
| 6 | 0.1674 | 2 |
| 7 | 0.2254 | 5 |
| 8 | 0.3171 | 4 |
| 9 | 0.4554 | 8 |
| 10 | 0.9623 | 17 |
number of observations
number of groups
Hosmer-Lemeshow chi2 (8)
Prob > chi2
1fit

Logistic model for STA, goodness-of-fit test

number of observations =

number of covariate patterns
Pearson chi2 (129)
Prob > chi2

Exp 1 | Obs 0 | Exp O
+ +
0.1 | 20 | 19.9
0.4 | 20 | 19.6
1.0 | 21 | 22.0
1.0 | 17 | 16.0
1.8 | 19 | 19.2
_______ +_______+_______
2.6 | 17 | 1l6.4
3.9 | 15 | 1le6.1
5.5 | 16 | 14.5
7.6 | 12 | 12.4
l16.1 | 3 | 3.9
= 200
= 10
—3 4.00
= 0.8570
200
= 135
= 79.23
= 0.9998



Because the distribution of C depends on m-asymptotics, the
appropriateness of the p-value will depend on the estimated expected
frequencies being large enough to employ this theory.

If one is concerned about the magnitude of the expected frequencies,
selected adjacent columns may be combined to increase the size of
the expected frequencies. Unfortunately, when this is done the power
of the test is reduced since the degrees of freedom are reduced.

When C is calculated from fewer than 6 groups, it will almost always
indicate that the model fits. Thus, try to use with as many groups as
possible.

The problem is that, when working with really large data sets, the GOF
test may be too powerful, indicating that the model is poorly calibrate
when it is not.



"Standardizing The Power Of The Hosmer-Lemeshow
Goodness Of Fit Test In Large Data Sets".
Paul, Prabasaj, Michael L. Pennell, and Stanley Lemeshow.
Statistics in Medicine. 32.1 (2013): 67-80.

In this paper we found that the power of the Hosmer-Lemeshow test
increased with sample size and decreased with the number of groups.

Previous work has shown that the Hosmer-Lemeshow test works best
when there are at least five observations per group, and when the
number of groups is greater than or equail to six.

The test often breaks down as well when the event is rare.

Taking all of these into account, this paper listed recommendations for
what group sizes to use in various scenarios.



With sample sizes up to 1000, a group size of ten is recommended.
This often keeps the power below 70% which, in some scenarios, may
still be too powerful.

For sample sizes between 1,000 and 25,000 observations, we

recommend using the following equation to determine the number of
groups, g, to use:

2
g=max|10,mind 2 2-M 5, g/ 1
2 2 1000

where nis the sample size and m is the number of successes.



This formula is justified by noting that power was kept relatively
consistent to a benchmark used with a sample size of 1000 and a
group size of 10 in our simulation results when the equation

was used.

Moreover, the assumption is made that the number of groups taken is
never below 10.

It is also noted that this equation breaks down as the sample size
becomes smaller, as it is recommended to have at least five
observations per group.

Finally, for sample sizes greater than 25,000, this equation breaks down
as well, as the equation defaults to the number of successes
(m) divided by two.

This results in a test that is too powerful.



Applying the formula for g on the previous slide:
e for n< 1000, use g=10
o for n= 2000, use g= 34
e for n = 4000, use g= 130
e for n > 25,000, we can’t apply this rule as the formula breaks down

For large data sets, we have begun 1o run the H-L test repeatedly using
differing numbers of groups to see if good fit is maintained over the
range of g.



e.g., ICU model with 37,913 patients in developmental data set
and 4,212 patients in the validation data set

Developmental dataset
Area under the ROC curve = 0.771
Hosmer-Lemeshow goodness of fit test

Validation dataset
Area under the ROC curve = 0.779
Hosmer-Lemeshow goodness of fit test

Obs (N) Groups DoF p-value Obs (N) Groups DoOF p-value
37,913 10 8 0.6599 4,212 10 10 0.1615
37,913 20 18 0.1529 TE—rE 20 20 0.4069
37,913 30 28 0.6417 4’212 30 30 0.1238
37,913 40 38 0.2924 4’212 40 40 0.4082
37,913 50 48 0.6463 4’212 50 50 0.0211
37,913 60 58 0.6729 4 212 60 60 0.1718
37,913 70 68 0.4528 4’212 70 70 0.2039
37,913 80 78 0.4462 4’212 30 30 0.2201
37,913 90 88 0.3036 4’212 90 90 0.1922
37,913 100 98 0.3119 4,212 100 100 0.2597
37,913 150 148 0.1687 4 212 110 110 0.7880
37,913 200 198 0.2857 4’212 120 120 0.3073
37,913 250 248 0.0580 4’212 130 130 0.2000
37,913 300 298 0.5931 4 212 120 120
37,913 350 348 0.1107 4’212 150 150 0.5995
37,913 400 398 0.4498 £
37,913 450 448 0.1305
37,913 500 498 0.5497
37,913 550 548 0.1334
37,913 600 598 0.4071
37,913 650 648 0.3702
37,913 700 698 0.3172
37,913 750 748 0.5634
37,913 800 798 0.3019
37,913 850 848 0.7065
37,913 900 898 0.6207
37,913 950 948 0.8317

37,913 1000 998 0.1523



A strategy for evaluating goodness-of -fit for a logistic regression model
using the Hosmer-Lemeshow test on samples from a large data set
Adam Bartley, Michael Pennell, Stanley Lemeshow, and Gary Phillips

Purpose of Research

*Evaluate, through a simulation study, a subsampling approach for assessing
goodness-of -fit in large data sets.

-Use results of simulations fo make recommendations for implementing a subsampling
approach.

Simulation Methods

-Data were simulated under 5 different scenarios (Table 1).

-Except for Scenario 1, each data set was analyzed using a model that differed
from the truth (Table 1).

- Scenario 2: true and fitted models were virtually identical.

- Scenario 4: small difference in the tails.

-The H-L test was implemented on 100 subsets of size 1,000 and 5,000.

*Number of significant tests (p-value < 0.05) enumerated.

*Process repeated for 100 data sets/scenario.



Table 1. Simulation Scenarios

Scenario True Model for Log-odds, g(X)

1 gX)=X1+X; G(X) = Po + prXy + BoX;
2 g(X)=X; + X, + 0.05X,X; §(X) = fo + BrXy + P2 X
3 g(X) =X, + X, + 05X, X, §(X) = fo + BuX1 + o X
4 g(X) =X, +0.05x] §(X) = Bo + B X,
5 g(X)=X; +0.1x} g(X) = Bo + p1 X1
X;~Normal (0,1); X, ~Bernoulli (p =0.5)
Results

Table 2. Simulation results: # Significant Subsets out of 100. Frequencies are #
data sets (out of 100) with specified number of significant subsets.

-- Subset size = 1,000 Subset size = 5,000
I I T T B R Y T YT
50,000 0
100,000 36 3 0 57 3 0
2 50,000 39 0 0 72 18 0
100,000 35 0 0 63 7 0
3 50,000 71 13 0 100 100 88
100,000 71 10 0 100 100 67
4 50,000 76 8 0 99 81 20
100,000 64 5 0 98 78 9
5 50,000 97 47 0 100 100 100
100,000 92 37 0 100 100 100




Results

-Samples frequently had > 5 significant subsets; even if correct model was fit
(Scenario 1).

- > 20 significant subsets was only common when true and fitted models differed
greatly (Scenarios 3 and 5).

- > 10 subsets uncommon when true and fitted models were the same or almost
identical (Scenarios 1, 2).

- Inadequate power to detect poorly fit models (Scenarios 3 and 5) when subset size
< 5,000.

- True model rejected too often when N < 100,000.

Recommendations
For N > 100,000, draw 100 subsets of size 5,000.
- Conclude lack-of -fit if H-L test is significant in > 10 subsets.



“A new cdlibration test and a reappraisal of the calibration belt for the
assessment of prediction models based on dichotomous outcomes”
Giovanni Nattino, Stefano Finazzi and Guido Bertolini
Stafistics in Medicine 2014, 33 2390-2407

Recall:

Iogii(Pr(y = 1})_()) = Iogii(n()_()) = g()_() = ,30 +BX,+ B, X, +--+ B X,

For each subject, i= 1,2,...,n, we can compute:

» the logit g, ()_(,.)
eéi()—(i)

* the probability 7, =

X;

1+e%)

Cadlibration is the agreement between y, and 7,



The Calibration Plot

ICU model
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The Calibration Plot

ICU model
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The Calibration Curve:

Now that we’ve fit our model,
e we have

i, = Pr(yi = ll)_(i) and g, = g(x,.)

for each subject.

This relationship can be expressed as
logit{Pr(v =17)} = o, + z, {logit(# )} = a, + o, {§} = logit {Pr (¥ =1/}
so,ifa,=0and o, =1
Iogit{Pr (v = l\ﬁ)} = 0+1{logit(#)} = logit(#)

=Pr((Y =1)|7)=7

If the data fit perfectly, then @, =0 and ¢, =1
but it certainly doesn't have to be a linear relationship



Why not:
Iogit{Pr (r=1)

N N

—_— o A2 o0 0 m
g}-a0+a]g+azg +eta_g

What should we choose for m?

e if foo small = too simplistic

o if foo large = estimation of useless parameters
a forward selection algorithm is used

e.g., ICU data
m=2: Iogii{Pr(Y =1)

g} = 0.117 + 0.917§ + 0.076 5"

n

[ =-66.22016
m =3:logit{Pr(¥ =1)§} = 0.116+0.916§ +0.076g" + 0.00019§°
[, = —66.22015

Likelihood Ratio Test: H0 o, = 0 vs Ha o, # 0
G =0.00002, p=0996 NS =m=2



so using the m =2 model:
Iogit{Pr (v=1) _c}} = 0.117 +0.917§ + 0.076

we define the calibration curve as:

0.117+0.91 7|ogit(fr)+o.o76(logif(7%))2

Pr(Y =1|&)=F(%) =

0.117+0.91 7|ogit(7%)+o.076(logii(ﬁ))2
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so the best model appears to be the m =2 model:
Iogit{Pr (v=1) g} = 0.117+0.917§ + 0.076 "

If the calibration were perfect: «, =0, a, =1, «, =0,

since then, Iogii{Pr (Y = l)'é} =0+1x§+0=g

So we would like 1o test Ho: a, =0 and a, =1and a, =0
vsHa: a0¢00ra]¢1ora2¢0

The test:
e is based on a likelihood ratio statistic;
e accounts for the iterative process to define m.

G =1.08, p-value =0.299

Recall: Hosmer-Lemeshow p-value = 0.857.



The calibration belt

calibrationbelt
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Example of a Poorly Calibrated Model:
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Calibration Belt for this model:

© - Polynomial degree: 3
p-value: <0.001
n: 1000
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So, as we’ve seen, the calibration belt can assess the
goodness of fit of a model without any categorization.

The calibration belt is an informative tool 1o detect deviations from the
perfect fit of a model.

The information provided helps improving the goodness of fit of logistic
regression models.

Let us return to our ongoing modeling efforts.



Calibration Belt:
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