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But actually, what is deep learning?

Deep learning is a general framework for function approximation.

It uses parametric approximators called neural networks, which are
compositions of some tunable affine functions f1, ..., fL with a simple
fixed nonlinear function σ:

F(x) = f1 ◦ σ ◦ f2 ◦ ... ◦ σ ◦ fL(x)

These functions are called layers. The nonlinearity σ is usually called
the activation function.

The derivatives of F with respect to the tunable parameters can be
computed using the chain rule via the backpropagation algorithm.
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A glimpse at the zoology of layers
The simplest kind of affine layer is called a fully connected layer:

fl(x) = Wlx + bl,

where Wl and bl are tunable parameters.

The activation function σ is usually a univariate fixed function
applied elementwise. Here are two popular choices:
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Why is it convenient to compose affine functions?

• Neural nets are powerful approximators: any continuous function
can be arbitrarily well approximated on a compact using a
three-layer fully connected network F = f1 ◦ σ ◦ f2 (universal
approximation theorem, Cybenko, 1989, Hornik, 1991).

• Some prior knowledge can be distilled into the architecture (i.e.
the type of affine functions/activations) of the network. For
example, convolutional neural networks (convnets, LeCun,
1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine
functions are convolution operators with some learnt filters.

• When the neural network parametrises a regression function,
empirical evidence shows that adding more layers leads to
better out-of-sample behaviour. Roughly, this means that
adding more layers is a way of increasing the complexity of
statistical models without paying a large overfitting price: there is
a regularisation-by-depth effect.
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A simple example: nonlinear regression with a
multilayer perceptron (MLP)

We want to perform regression on a data set

(x1, y1), ..., (xn, yn) ∈ Rp × R.

We can model the regression function using a multilayer perceptron
(MLP): two connected layers with an hyperbolic tangent in-between:

∀i ≤ n, yi = F(xi) + εi = W1tanh(W0xi + b0) + b1 + εi.

The coordinates of the intermediate representation W0xi + b0 are
called hidden units.

If we assume that the noise is Gaussian, then we can find the
maximum likelihood estimates of W1,W0,b1,b0 by minimising the
squared error using gradient descent. Gradients are computed via
backpropagation.
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A simple example: nonlinear regression with a
multilayer perceptron (MLP)

∀i ≤ n, yi = F(xi) + εi = W1tanh(W0xi + b0) + b1 + εi,

Let’s try to recover the function sin(x)/x using 20 samples:
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Continuous latent variable models

A generative model p(x) “describes a process that is assumed to
give rise to some data” (D. MacKay).

In a continuous latent variable model we assume that there is an
unobserved random variable z ∈ Rd. Usually, d is smaller than the
dimensionality of the data, and we can think of z as a code
summarizing multivariate data x.

A classic example: factor analysis. The generative process is:
• z ∼ N (0, Id),

• x|z ∼ N (Wz + µ,Ψ).
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Deep latent variable models (DLVMs)

Deep latent variable models combine the approximation abilities
of deep neural networks and the statistical foundations of

generative models.

Independently invented by Kingma and Welling (2014), as variational
autoencoders, and Rezende et al. (2014) as deep latent Gaussian
models.
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Deep latent variable models (DLVMs)
(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Assume that (xi, zi)i≤n are i.i.d. random variables driven
by the model:{

z ∼ p(z) (prior)
x ∼ pθ(x | z)

= Φ(x | fθ(z))

(output density)

z

x

θ

n

where
• z ∈ Rd is the latent variable,

• x ∈ X is the observed variable.

• the function fθ : Rd → H is a (deep) neural network called the
decoder, and

• (Φ(· | η))η∈H is a parametric family of output densities,

e.g. multivariate Gaussians or products of multinomials.
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The role of the decoder

The role of the decoder fθ : Rd → H is:
• to transform z (the code) into parameters η = fθ(z) of the output

density Φ(· | η).
• The weights θ of the decoder are learned.

An illustrative example of a simple non-linear decoder is

z ∼ N (0, I2) and f (z) = z/10 + z/‖z‖.

Image from Doersch (2016)
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DLVMs applications: density estimation on MNIST
(Rezende et al., 2014)

Training data Model samples
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DLVMs applications: density estimation on
(Brendan) Frey faces
(Rezende et al., 2014)

Training data Model samples
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DLVMs applications: Data imputation
(Rezende et al., 2014)
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Learning DLVMs
(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Given a data matrix X = (x1, . . . , xn)ᵀ ∈ X n, the log-likelihood
function for a DLVM is

`(θ) = log pθ(X) =

n∑
i=1

log pθ(xi),

where
pθ(xi) =

∫
Rd

pθ(xi | z)p(z) dz.

We would like to find the MLE θ̂ = argmaxθ `(θ).

However, even with a simple output density pθ(x | z)

:

• pθ(x) is intractable rendering MLE intractable

• pθ(z | x) is intractable rendering EM intractable

• stochastic EM is not scalable to large n and moderate d.
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Variational Inference (VI)
(Kingma and Welling, 2014; Rezende et al., 2014; Blei et al., 2017)

VI approximatively maximises the log-likelihood by maximising the
evidence lower bound

ELBO(θ, q) = Ez∼q

[
log

pθ(X,Z)

q(X)

]
= `(θ)− KL(q || pθ(· | X)) ≤ `(θ)

wrt. (θ, q), where
• q ∈ D is variational distribution for a family of distributions D

over the space of codes Rn×d,
• X = (x1, . . . , xn)ᵀ ∈ X n and Z = (z1, . . . , zn)ᵀ ∈ Rn×d.

However, computing a distribution over Rn×d is to costly for
large datasets.
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Amortised Variational Inference (AVI)
(Kingma and Welling, 2014; Rezende et al., 2014; Gershman and Goodman, 2014)

Amortised inference scales up VI by learning a function g that
transform each data point into the parameters of the
approximate posterior

qγ,X(Z) =

n∏
i=1

Ψ(zi | gγ(xi)),

where
• (Ψ(·|κ))κ∈K is is a parametric family of distributions over Rd

(usually Gaussians),
• gγ : X → K is a neural net called the inference network.

Inference for DLVMs solves the optimisation
problem

max
θ∈Θ,γ∈Γ

ELBO(θ, qγ,X),

DLVM with AVI is denote a variational
autoencoder (VAE).

z

x

θ

γ

n
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Our contributions
(Mattei and Frellsen, 2018)

On the boundedness of the likelihood of deep latent variable
models:

• We show that maximum likelihood is ill-posed for DLVMs with
Gaussian outputs.

• We propose how to tackle this problem using constraints.

• We show that maximum likelihood is well-posed for DLVMs
with discrete outputs.

• We provide a way of finding an upper bound of the likelihood.

Handling missing data in deep latent variable models:

• For missing data at test time, we show how to draw samples
according to the exact conditional distribution of the
missing data.
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On the boundedness of the likelihood of DLVMs
(Mattei and Frellsen, 2018)

If we see the prior as a mixing distribution, DLVMs are continuous
mixtures of the output distribution. But ML for finite Gaussian
mixtures is ill-posed: the likelihood function is unbounded and the
parameters with infinite likelihood are pretty terrible.

“Mixtures, like tequila, are inherently evil and should be
avoided at all costs” – Larry Wasserman

Hence the questions:
• Is the likelihood function of DLVMs with Gaussian outputs

bounded above?
• Do we really want a very tight ELBO?
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On the boundedness of the likelihood of DLVMs
(Mattei and Frellsen, 2018)

Consider a DLVM with p-variate Gaussian outputs where

`(θ) =

n∑
i=1

log
∫
Rd
N (x|µθ(z),Σθ(z))p(z) dz.

Like Kingma and Welling (2014), consider a MLP decoder with h ∈ N∗
hidden units of the form

µθ(z) = V tanh(Wz + a) + b

µ
θ
(i,w)
k

(z) = xi

Σθ(z) = exp(αᵀ tanh(Wz + a) + β)Ip

Σ
θ
(i,w)
k

(z) = exp(αk tanh(αkwᵀz)− αk)Ip

where θ = (W, a,V,b,α, β).

Now consider a subfamily with h = 1 and

θ
(i,w)
k = (αkwᵀ, 0, 0, xi, αk,−αk),

where (αk)k≥1 is a nonnegative real
sequence

αk →∞ as k→∞.

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html
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On the boundedness of the likelihood of DLVMs
(Mattei and Frellsen, 2018)

Theorem
For all i ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that
limk→∞ `

(
θ
(i,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi) of the i-th observation
explodes while all other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution
p
θ
(i,w)
k

(xi) is is spherically symmetric and unimodal around xi.

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.
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Tackling the unboundedness of the likelihood
(Mattei and Frellsen, 2018)

Proposition

Let ξ > 0. If the parametrisation of the decoder is such that the image
of Σθ is included in

Sξp = {A ∈ S+
p |min(Sp A) ≥ ξ}

for all θ, then the log-likelihood function is upper bounded by
−np log

√
πξ

Note: Such constraints can be implemented by added ξIp to Σθ(z).
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Discrete DLVMs do not suffer from unbounded
likelihood

When X = {0, 1}p, Bernoulli DLVMs assume that (Φ(·|η))η∈H is the
family of p-variate multivariate Bernoulli distribution (that is, the family
of products of p univariate Bernoulli distributions). In this case,
maximum likelihood is well-posed.

Proposition

Given any possible parametrisation, the log-likelihood function of a
deep latent model with Bernoulli outputs is everywhere negative.
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Towards data-dependent likelihood upper bounds
(Mattei and Frellsen, 2018)

We can interpret DLVM as parsimonious submodel of a
nonparametric mixture model

pG(x) =

∫
H

Φ(x|η) dG(η) `(G) =

n∑
i=1

log pG(xi).

• The model parameter is the mixing distribution G ∈ P, where P
is the set of all probability measures over parameter space H.

• This is a DLVM, when G is generatively defined by:
z ∼ p(z); η = fθ(z).

• This is a finite mixture model, when G is has a finite support.

This generalisation bridges the gap between finite mixtures and
DLVMs.
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Towards data-dependent likelihood upper bounds
(Mattei and Frellsen, 2018; Cremer et al., 2018)

This gives us an immediate upper bound on
the likelihood for any decoder fθ:

`(θ) ≤ max
G∈P

`(G)

Theorem
Assume that (Φ(· | η))η∈H is the family of
multivariate Bernoulli distributions or
Gaussian distributions with the spectral
constraint. The likelihood of the
nonparametric mixture model is maximised
for a finite mixture model of k ≤ n distributions
from the family (Φ(· | η))η∈H.
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Unboundedness for a DLVM with Gaussian
outputs (Frey faces)
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Data imputation with variational autoencoders
(rezende2014; Mattei and Frellsen, 2018)

After training a couple encoder/decoder, we consider a new data point
x = (xobs, xmiss).

In principle we can impute xmiss using

pθ(xmiss | xobs) =

∫
Rd

Φ(xmiss | xobs, fθ(z))p(z|xobs) dz.

Since (31) is intractable, Rezende
et al. (2014) suggested using
pseudo-Gibbs sampling, by
forming a Markov chain (zt, x̂miss

t )t≥1

• zt ∼ Ψ(zi | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(z))p(zt)

z

x

θ

γ

n
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After training a couple encoder/decoder, we consider a new data point
x = (xobs, xmiss).

In principle we can impute xmiss using

pθ(xmiss | xobs) =

∫
Rd

Φ(xmiss | xobs, fθ(z))p(z|xobs) dz.

Since (31) is intractable, Rezende
et al. (2014) suggested using
pseudo-Gibbs sampling, by
forming a Markov chain (zt, x̂miss

t )t≥1

• zt ∼ Ψ(zi | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(z))p(zt)

We propose
Metropolis-within-Gibbs:
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Comparing pseudo-Gibbs and
Metropolis-within-Gibbs
(Mattei and Frellsen, 2018)

• Network architectures from Rezende et al. (2014) with 200 hidden units and
intrinsic dimension of 50.

• Both samples use the same trained VAE.

• Perform the same number of iterations (300).
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Comparing pseudo-Gibbs and
Metropolis-within-Gibbs
(Mattei and Frellsen, 2018)

• Network architectures from Rezende et al. (2014) with 200 hidden units and
intrinsic dimension of 50.

• Both samples use the same trained VAE.

• Perform the same number of iterations (500).
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Summary

• DLVMs are highly flexible generative models.

• We showed that MLE is ill-posed for unconstrained DLVMs with
Gaussian output.

• We propose how to tackle this problem using constraints.

• We provided an upper bound for the likelihood in well-posed cases.

• We showed how to draw samples according to the exact
conditional distribution with missing data.

Thank you for your attention!

Questions?
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