Deep latent variable models

Pierre-Alexandre Mattei
IT University of Copenhagen
http://pamattei.github.io
@pamattei

19 avril 2018
Séminaire de statistique du CNAM

http://pamattei.github.io

Overview of talk

A short introduction to deep learning
Deep latent variable models
On the boundedness of the likelihood of deep latent variable models

Handling missing data in deep latent variable models

But actually, what is deep learning?

Deep learning is a general framework for function approximation.

But actually, what is deep learning?

Deep learning is a general framework for function approximation.

It uses parametric approximators called neural networks, which are
compositions of some tunable affine functions /i, ..., /; with a simple
fixed nonlinear function o:

F(x)=fiooof,o..000f(x)

These functions are called layers. The nonlinearity o is usually called
the activation function.

But actually, what is deep learning?

Deep learning is a general framework for function approximation.

It uses parametric approximators called neural networks, which are
compositions of some tunable affine functions /i, ..., /; with a simple
fixed nonlinear function o:

F(x)=fiooof,o..000f(x)

These functions are called layers. The nonlinearity o is usually called
the activation function.

The derivatives of F with respect to the tunable parameters can be
computed using the chain rule via the backpropagation algorithm.

A glimpse at the zoology of layers

The simplest kind of affine layer is called a fully connected layer:
f/(X) - WIX + b/?

where W, and b, are tunable parameters.

A glimpse at the zoology of layers

The simplest kind of affine layer is called a fully connected layer:
f/(X) =Wx + b,

where W, and b, are tunable parameters.

The activation function o is usually a univariate fixed function
applied elementwise. Here are two popular choices:

X o- —— Hyperbolic tangent

—— Restricted linear unit (ReLU)

Why is it convenient to compose affine functions?

e Neural nets are powerful approximators: any continuous function
can be arbitrarily well approximated on a compact using a
three-layer fully connected network F = f o o o f, (universal
approximation theorem, Cybenko, 1989, Hornik, 1991).

Why is it convenient to compose affine functions?

¢ Neural nets are powerful approximators: any continuous function
can be arbitrarily well approximated on a compact using a
three-layer fully connected network F = f o o o f, (universal
approximation theorem, Cybenko, 1989, Hornik, 1991).

e Some prior knowledge can be distilled into the architecture (i.e.
the type of affine functions/activations) of the network. For
example, convolutional neural networks (convnets, LeCun,
1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine
functions are convolution operators with some learnt filters.

Why is it convenient to compose affine functions?

¢ Neural nets are powerful approximators: any continuous function
can be arbitrarily well approximated on a compact using a
three-layer fully connected network F = f o o o f, (universal
approximation theorem, Cybenko, 1989, Hornik, 1991).

e Some prior knowledge can be distilled into the architecture (i.e.
the type of affine functions/activations) of the network. For
example, convolutional neural networks (convnets, LeCun,
1989) leverage the fact that local information plays an important
role in images/sound/sequence data. In that case, the affine
functions are convolution operators with some learnt filters.

e When the neural network parametrises a regression function,
empirical evidence shows that adding more layers leads to
better out-of-sample behaviour. Roughly, this means that
adding more layers is a way of increasing the complexity of
statistical models without paying a large overfitting price: there is
a regularisation-by-depth effect.

A simple example: nonlinear regression with a

multilayer perceptron (MLP)

We want to perform regression on a data set

(Xlayl)v cey (XrHYn) e R x R.

A simple example: nonlinear regression with a

multilayer perceptron (MLP)

We want to perform regression on a data set
(XIJ1)7 neey (XmYn) S R? x R.
We can model the regression function using a multilayer perceptron
(MLP): two connected layers with an hyperbolic tangent in-between:
Vi<n, y;= F(X,‘) +é& = Wltanh(Woxi + bo) +b; +¢;.

The coordinates of the intermediate representation Wyx; + b, are
called hidden units.

A simple example: nonlinear regression with a

multilayer perceptron (MLP)

We want to perform regression on a data set
(XIJ1)7 neey (XmYn) S R? x R.
We can model the regression function using a multilayer perceptron
(MLP): two connected layers with an hyperbolic tangent in-between:
Vi<n, y;= F(X,‘) +é& = Wltanh(Woxi + bo) +b; +¢;.

The coordinates of the intermediate representation Wyx; + b, are
called hidden units.

If we assume that the noise is Gaussian, then we can find the
maximum likelihood estimates of W, Wy, by, by by minimising the
squared error using gradient descent. Gradients are computed via
backpropagation.

A simple example: nonlinear regression with a

multilayer perceptron (MLP)

Vi<n, y;= F(X,‘) +é& = Wltanh(Woxi + bo) + b + ¢,

Let’s try to recover the function sin(x)/x using 20 samples:

5 hidden units

Overview of talk

A short introduction to deep learning
Deep latent variable models
On the boundedness of the likelihood of deep latent variable models

Handling missing data in deep latent variable models

Continuous latent variable models

A generative model p(x) “describes a process that is assumed to
give rise to some data” (D. MacKay).

In a continuous latent variable model we assume that there is an
unobserved random variable z ¢ R?. Usually, d is smaller than the
dimensionality of the data, and we can think of z as a code
summarizing multivariate data x.

A classic example: factor analysis. The generative process is:
ez~ N(Oa Id))
o x|z ~ N (Wz+ pu,).

Deep latent variable models (DLVMs)

Deep latent variable models combine the approximation abilities
of deep neural networks and the statistical foundations of
generative models.

Independently invented by Kingma and Welling (2014), as variational
autoencoders, and Rezende et al. (2014) as deep latent Gaussian

models.

Stochastic Backpropagation and Approximate Inference Auto-Encoding Variational Bayes
in Deep Generative Models

Abstract

Deep latent variable models (DLVMs)

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

N
Assume that (x;,z;);<, are i.i.d. random variables driven
by the model:
z ~ p(z) (prior) /9
X~ po(x|z) (output density)
")
where

e z ¢ R? is the latent variable,

e x ¢ X is the observed variable.

Deep latent variable models (DLVMs)

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

N
Assume that (x;,z;);<, are i.i.d. random variables driven
by the model:
z ~ p(z) (prior) /9
X~ po(x|z)=P(x|fo(z)) (output density)
"

where
e z ¢ R? is the latent variable,

e x ¢ X is the observed variable,

e the function f, : RY — H is a (deep) neural network called the
decoder, and

e (®(- | n))yen is a parametric family of output densities,
e.g. multivariate Gaussians or products of multinomials.

The role of the decoder

The role of the decoder f, : RY — H is:

e to transform z (the code) into parameters n = fy(z) of the output
density ®(- | n).

e The weights 0 of the decoder are learned.
An illustrative example of a simple non-linear decoder is

Z~ N(O, 12)

and f(z

1

) = 2/10+2/|l2].

1.0

0.5}

Image from Doersch (2016)

€3 40 | i | 0|\ | & Q| e[
QY 08| S| B 09| (o | [y [2
G N | | | [| by B
L ERIE IR N AR R e T Do
ol O | | o [) [a | | | K
I[N B8] D)~ O 20|
D | Y N £3 [0 [On | e N[0
RCIE NS RIS S A R R
G| | [[0 | Q) | (R | |
| S| I~ PN ™| N8|
0o | PN N[| Y [o0 Do
<o) —[Lp)a 0 [8]0 3
o] £ NN [] | | e | 80
| o[9[M | e | &[5y
O €| | 0|~ ||] Wy |5 | B
MW N | TS9O N T
IR S I R R ks
NENIR G RN R
Q| v || QM|

-
g
<
=
c
o
c
9
e
(1)
E
e
()]
(<))
>
—
(2]
c
o
©
)
c
9
)
©
=
o
o
©
(2]
=
-
o

—~
<
-
[=]
N
«
——
o
(%]
T
c
(3]
N
Q
o
=3

Model samples

Training data

DLVMs applications: density estimation on

(Brendan) Frey faces
(Rezende et al., 2014)

Training data

ESERE
EEEEE

EEEE
PEBEl
ESEEE

Model samples

c
o
—
1]
-y
=2
Q.
=
S
e
©
o
m\w
c
o
=
©
9
a
Q.
(1]
(2]
S
-
o

—~
<
-
[=]
N
«
——
o
(%]
T
=
(3]
N
Q
o
=3

1|~ || |~
||~ ||| e~
||~ ||| s~
|| ~a || e~
||~ e
||~ S| ~a
|~ || o~
||~ ||| =0
|| o || e~
1| r~~ || | e~
ST Y I SR
SRR EIEERY
& ~NQ (|| e~
1Ry i~ <G || | "D
15 G || | s
(e e

|| e

Learning DLVMs

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Given a data matrix X = (xy,...,x,)T € A", the log-likelihood
function for a DLVM is

((6) = logpe(X) = > _ log pa(xi),
i=1

where

Po(xi) = /Rd po(x; | z)p(z) dz.

We would like to find the MLE 6 = argmax, /(8).

Learning DLVMs

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Given a data matrix X = (xy,...,x,)T € A", the log-likelihood
function for a DLVM is

((6) = logpe(X) = > _ log pa(xi),
i=1

where

po(xi) = /R po(xi| z)p(z) dz.

We would like to find the MLE 6 = argmax, /(8).

However, even with a simple output density po(x | z):

e po(x) is intractable rendering MLE intractable

Learning DLVMs

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Given a data matrix X = (xy,...,x,)T € A", the log-likelihood
function for a DLVM is

((6) = logpe(X) = > _ log pa(xi),
i=1

where

po(xi) = /R po(xi| z)p(z) dz.

We would like to find the MLE 6 = argmax, /(8).

However, even with a simple output density po(x | z):

e po(x) is intractable rendering MLE intractable

e po(z | x) is intractable rendering EM intractable

Learning DLVMs

(Kingma and Welling, 2014; Rezende et al., 2014; Mattei and Frellsen, 2018)

Given a data matrix X = (xy,...,x,)T € A", the log-likelihood
function for a DLVM is

((6) = logpe(X) = > _ log pa(xi),
i=1

where

po(xi) = /R po(xi| z)p(z) dz.

We would like to find the MLE 6 = argmax, /(8).

However, even with a simple output density po(x | z):

e po(x) is intractable rendering MLE intractable
e po(z | x) is intractable rendering EM intractable

o stochastic EM is not scalable to large n and moderate 4.

Variational Inference (VI)

(Kingma and Welling, 2014; Rezende et al., 2014; Blei et al., 2017)

VI approximatively maximises the log-likelihood by maximising the

evidence lower bound

Pe (X7 Z)
9(X)

BLBO(,() By, g | = 16) - KL(q 7ot 1%0) < ¢(6)
wrt. (6, ¢), where

e ¢ < D is variational distribution for a family of distributions D
over the space of codes R"*,

e X=(x1,....,x,)T €X"and Z = (zy,...,2,)T € R

Variational Inference (VI)

(Kingma and Welling, 2014; Rezende et al., 2014; Blei et al., 2017)

VI approximatively maximises the log-likelihood by maximising the

evidence lower bound

Pe (X7 Z)
9(X)

BLBO(,() By, g | = 16) - KL(q 7ot 1%0) < ¢(6)
wrt. (6, ¢), where

e ¢ < D is variational distribution for a family of distributions D
over the space of codes R"*,

e X=(x1,....,x,)T €X"and Z = (zy,...,2,)T € R

However, computing a distribution over R"*¢ is to costly for
large datasets.

Amortised Variational Inference (AVI)

(Kingma and Welling, 2014; Rezende et al., 2014; Gershman and Goodman, 2014)

Amortised inference scales up VI by learning a function g that
transform each data point into the parameters of the
approximate posterior

4 x(2) = [[(@ | g5(x)).
i=1

where

o (U(-|k))xex is is a parametric family of distributions over R¢
(usually Gaussians),

e g, : X — K is a neural net called the inference network.

Inference for DLVMs solves the optimisation T)
problem)
eel(g?z/(er ELBO(6, ¢-.x), v
\ 0
/

DLVM with AVl is denote a variational
autoencoder (VAE).

Our contributions

(Mattei and Frellsen, 2018)

On the boundedness of the likelihood of deep latent variable
models:

e We show that maximum likelihood is ill-posed for DLVMs with
Gaussian outputs.

e We propose how to tackle this problem using constraints.

¢ We show that maximum likelihood is well-posed for DLVMs
with discrete outputs.

o We provide a way of finding an upper bound of the likelihood.

Handling missing data in deep latent variable models:

e For missing data at test time, we show how to draw samples
according to the exact conditional distribution of the
missing data.

Overview of talk

A short introduction to deep learning
Deep latent variable models
On the boundedness of the likelihood of deep latent variable models

Handling missing data in deep latent variable models

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)

If we see the prior as a mixing distribution, DLVMs are continuous
mixtures of the output distribution. But ML for finite Gaussian
mixtures is ill-posed: the likelihood function is unbounded and the
parameters with infinite likelihood are pretty terrible.

“Mixtures, like tequila, are inherently evil and should be
avoided at all costs” — Larry Wasserman

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)

If we see the prior as a mixing distribution, DLVMs are continuous
mixtures of the output distribution. But ML for finite Gaussian
mixtures is ill-posed: the likelihood function is unbounded and the
parameters with infinite likelihood are pretty terrible.
“Mixtures, like tequila, are inherently evil and should be
avoided at all costs” — Larry Wasserman

Hence the questions:
¢ Is the likelihood function of DLVMs with Gaussian outputs
bounded above?
e Do we really want a very tight ELBO?

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)
Consider a DLVM with p-variate Gaussian outputs where

(0) = > tog / N (xlpo(z), Zo(2))plz) da.

Like Kingma and Welling (2014), consider a MLP decoder with & € N*
hidden units of the form

po(z) = Vtanh(Wz + a) + b

Yo (z) = exp(aT tanh(Wz + a) + ()1,

where 6 = (W,a, V,b, a,).

output layer

hidden layer

input layer

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)
Consider a DLVM with p-variate Gaussian outputs where

(0) = > tog / N (xlpo(z), Zo(2))plz) da.

Like Kingma and Welling (2014), consider a MLP decoder with & € N*
hidden units of the form

po(z) = Vtanh(Wz + a) + b

Yo (z) = exp(aT tanh(Wz + a) + ()1,

where 6 = (W,a, V,b, a,).

Now consider a subfamily with # = 1 and

(i,w) output layer
0, = (aqwT,0,0,x;, oy, —ay),
hidden layer
where (o)r>1 I8 @ nonnegative real
input layer

sequence

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)
Consider a DLVM with p-variate Gaussian outputs where

(0) = > tog / N (xlpo(z), Zo(2))plz) da.

Like Kingma and Welling (2014), consider a MLP decoder with & € N*
hidden units of the form

po(z) = Vtanh(Wz + a) + b Hgfim (z) = x;

Yo(z) = exp(aT tanh(Wz +a) + B)I, 2 0w (2) = exp(ay tanh(quwTz) — ay)l,
where 6 = (W,a, V,b, a, 3).

Now consider a subfamily with # = 1 and

(i,w) output layer
0, = (uwT,0,0,x;, o, —oy),
hidden layer
where (ox)r>1 I8 @ nonnegative real
input layer

sequence

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)

Theorem

Foralli€ {1,...,n} andw € R?\ {0}, we have that
limy_yoc £ (0,5"”)) = .

Proof main idea: the contribution logpgim (x;) of the i-th observation
k
explodes while all other contributions remain bounded below.

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)

Theorem

Foralli€ {1,...,n} andw € R?\ {0}, we have that
limyc0 £ (8™ = o0.

Proof main idea: the contribution logpgim (x;) of the i-th observation
k

explodes while all other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

Forallk € N*,i € {1,...,n} andw € R?\ {0}, the distribution
P (Xi) IS Is spherically symmetric and unimodal around x;.
k

No, because of the constant mean function.

On the boundedness of the likelihood of DLVMs

(Mattei and Frellsen, 2018)

Theorem
Foralli€ {1,...,n} andw € R?\ {0}, we have that
limyc0 £ (8™ = o0.

Proof main idea: the contribution logpgim (x;) of the i-th observation
k

explodes while all other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

Forallk € N*,i € {1,...,n} andw € R?\ {0}, the distribution
P (Xi) IS Is spherically symmetric and unimodal around x;.
k

No, because of the constant mean function.

What about other parametrisations?
e The used MLP is a subfamily.
o Universal approximation abilities of neural networks.

Tackling the unboundedness of the likelihood

(Mattei and Frellsen, 2018)

Proposition

Let¢ > 0. If the parametrisation of the decoder is such that the image
of Xg is included in

_ +| mi
Sg ={A € 5, |min(SpA) > ¢}

for all 8, then the log-likelihood function is upper bounded by
—nplog /7€

Note: Such constraints can be implemented by added ¢I, to Xg(z).

Discrete DLVMs do not suffer from unbounded

likelihood

When X = {0, 1}?, Bernoulli DLVMs assume that (®(-|n))yecn is the
family of p-variate multivariate Bernoulli distribution (that is, the family
of products of p univariate Bernoulli distributions). In this case,
maximum likelihood is well-posed.

Proposition

Given any possible parametrisation, the log-likelihood function of a
deep latent model with Bernoulli outputs is everywhere negative.

Towards data-dependent likelihood upper bounds

(Mattei and Frellsen, 2018)

We can interpret DLVM as parsimonious submodel of a
nonparametric mixture model

pa(x) = / B(x) dG(n) (G) =3 togpa(x).
H i=1

e The model parameter is the mixing distribution G € P, where P
is the set of all probability measures over parameter space H.

e This is a DLVM, when G is generatively defined by:
z~p(z);n = fo(z).
e This is a finite mixture model, when G is has a finite support.

This generalisation bridges the gap between finite mixtures and
DLVMs.

Towards data-dependent likelihood upper bounds

(Mattei and Frellsen, 2018; Cremer et al., 2018)

This gives us an immediate upper bound on
the likelihood for any decoder fy:

< ~
4(9) < max {(G) “é)

T parsimony gap
«(8)

approximation gap

ELBO(6, ¢k)

T amortisation gap

ELBO(6, ¢, x)

Towards data-dependent likelihood upper bounds

(Mattei and Frellsen, 2018; Cremer et al., 2018)

This gives us an immediate upper bound on
the likelihood for any decoder fy:

¢(0) < max £(G) “é)
T parsimony gap
Theorem)
Assume that (®(- | n))neu Is the family of approximation gap
multivariate Bernoulli distributions or ELBO(6, ¢x)

Gaussian distributions with the spectral
constraint. The likelihood of the
nonparametric mixture model is maximised
for a finite mixture model of k < n distributions
from the family (®(- | 1))nen-

T amortisation gap

ELBO(6, ¢, x)

Unboundedness for a DLVM with Gaussian
outputs (Frey faces)

/
250
@
B
2
5
3
o
°
8
o
<
T
=
&
o
S
0
~— Constrained ELBO (Test)
- — Constrained ELBO (Training)
- — Constrained naive upper bound
— Constrained nonparametric upper bound
~— Unconstrained ELBO (Test)
- — Unconstrained ELBO (Training)
250

0 5000 10000
Epochs

Overview of talk

A short introduction to deep learning
Deep latent variable models
On the boundedness of the likelihood of deep latent variable models

Handling missing data in deep latent variable models

Data imputation with variational autoencoders

(rezende2014; Mattei and Frellsen, 2018)

After training a couple encoder/decoder, we consider a new data point
X — (ths7 Xmiss)_

In principle we can impute x™* using

o Xmiss Xobs _) Xmiss Xobs’ fG z z Xobs dz.
p . P
R

Since (31) is intractable, Rezende

et al. (2014) suggested using —

pseudo-Gibbs sampling, by

forming a Markov chain (z,, X™**), A
o 2~ W(z; | g (x X1Y)) '

° ﬁ;nlss ~ (I)(Xmlss | XObS7f0(Z))p(Z[) /

Data imputation with variational autoencoders

(rezende2014; Mattei and Frellsen, 2018)

After training a couple encoder/decoder, we consider a new data point

X = (Xobs7 Xmiss).

In principle we can impute x™ using

po(xmiss | XObS) _ / (I)(Xmiss | XObS,fg(Z))p(Z|X0bS) dz.
R4

Since (31) is intractable, Rezende
et al. (2014) suggested using
pseudo-Gibbs sampling, by
forming a Markov chain (z,, x™s) |
2~ (2 | gy (x*™, X11))
° f(lr‘niss ~ (I)(Xmiss | x°b57fg(z))p(z,)

We propose
Metropolis-within-Gibbs:

Algorithm 1 Metropolis-within-Gibbs sampler for missing
data imputation using a trained VAE

Inputs: Observed data x°**, trained VAE (fg, g), num-
ber of iterations 7'
Initialise (zg, X™*)
fort =1toT do
7y ~ \IJ(Z‘g.\,(XOb\ xmls;))
D™ XY |fo (20))p(2e) W(ze— 1Igw(x xf ")
PE= B0 3 o (a1)pac1) W (ol O 50)
it with probability p;
z;—1 with probability 1 — p;
KPS~ B, (7))
end for

zZy =

Comparing pseudo-Gibbs and

Metropolis-within-Gibbs

(Mattei and Frellsen, 2018)

0.905 OMNIGLOT Caltech 101 Silnouettes

0.900

0.895

Imputation accuracy

0.890

— Metropolis-within-Gibbs
--- Pseudo-Gibbs (Rezende et al., 2014)

0.885

70 8 40

E 0 E) E) 7 E] & 7
Percentage of missing data Percentage of missing data Percentage of missing data

e Network architectures from Rezende et al. (2014) with 200 hidden units and
intrinsic dimension of 50.

e Both samples use the same trained VAE.
e Perform the same number of iterations (300).

Comparing pseudo-Gibbs and

Metropolis-within-Gibbs

(Mattei and Frellsen, 2018)

Caltech 101 Silhouettes

MNIST OMNIGLOT
Missing half top bottom top bottom top bottom
Pseudo-Gibbs (Rezende et al., 2014) 85.76 88.32 86.98 85.99 68.41 71.02
86.83 89.21 87.09 87.08 73.32 73.77

Metropolis-within-Gibbs
e Network architectures from Rezende et al. (2014) with 200 hidden units and

intrinsic dimension of 50.
e Both samples use the same trained VAE.

e Perform the same number of iterations (500).

e DLVMs are highly flexible generative models.

o We showed that MLE is ill-posed for unconstrained DLVMs with
Gaussian output.

We propose how to tackle this problem using constraints.

We provided an upper bound for the likelihood in well-posed cases.

We showed how to draw samples according to the exact
conditional distribution with missing data.

DLVMs are highly flexible generative models.

We showed that MLE is ill-posed for unconstrained DLVMs with
Gaussian output.

We propose how to tackle this problem using constraints.

We provided an upper bound for the likelihood in well-posed cases.

We showed how to draw samples according to the exact
conditional distribution with missing data.

Thank you for your attention!

Questions?

References

1 T A e A P R P

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). “Variational Inference: A Review
for Statisticians”. In: Journal of the American Statistical Association 112.518,
pp. 859-877.

Cremer, C., X. Li, and D. Duvenaud (2018). “Inference Suboptimality in Variational
Autoencoders”. In: arXiv:1801.03558.

Day, N. E. (1969). “Estimating the Components of a Mixture of Normal Distributions”.
In: Biometrika 56.3, pp. 463—474.

Doersch, C. (2016). “Tutorial on variational autoencoders”. In: arXiv:1606.05908.

Frellsen, J., I. Moltke, M. Thiim, K. V. Mardia, J. Ferkinghoff-Borg, and T. Hamelryck
(2009). “A Probabilistic Model of RNA Conformational Space”. In: PLOS
Computational Biology 5.6, pp. 1-11.

Gershman, S. and N. Goodman (2014). “Amortized inference in probabilistic
reasoning”. In: Proceedings of the Annual Meeting of the Cognitive Science
Society. Vol. 36.

Kingma, D. P. and M. Welling (2014). “Auto-encoding variational Bayes”. In:
International Conference on Learning Representations.

MacKay, D. J. (2003). Information theory, inference and learning algorithms.
Cambridge University Press.

Mattei, P.-A. and J. Frellsen (2018). “Leveraging the Exact Likelihood of Deep Latent
Variables Models”. In: arXiv:1802.04826.

References

@ Mohamed, S. and D. Rezende (2017). Tutorial on Deep Generative Models. UAI 2017.

@ Rezende, D. J., S. Mohamed, and D. Wierstra (2014). “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models”. In: Proceedings of the 31st
International Conference on Machine Learning, pp. 1278—1286.

	A short introduction to deep learning
	Deep latent variable models
	On the boundedness of the likelihood of deep latent variable models
	Handling missing data in deep latent variable models

