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Part 1: Quantile Regression
Basic insights

Estimation

Inference

Properties
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Part 2: My recent research on handling heterogeneity
Unsupervised approach

Supervised approach

Quantile Composite-based Path Model

all computations and graphics were done in the R language using the packages quantreg and plspm
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Heterogeneity
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Synonyms for heterogeneity
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Heterogeneity

High heterogeneity is often more realistic for modeling the messy
real world and may give better results or identify subpopulations
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Part 1: Quantile Regression
Motivation

(Koenker R W and Basset G, Regression Quantiles. Econometrica 46(1), 1978)
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The flaw of Averages:
a rationale for quantile regression
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Basic motivation

Mosteller and Tukey (1977)
What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of X’s.
We could go further and compute several different regression curves
corresponding to the various percentage points of the distributions and
thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a
single distribution, so the regression curve gives a correspondingly
incomplete picture for a set of distributions.
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Quantile regression

QR has become a popular alternative to least squares regression
for modeling heterogeneous data
QR gained popularity in applied economics by the end of the 90’s,
when people realize the importance of heterogeneity
Fields of application:

I astrophysics
I chemistry
I ecology
I economics
I finance
I genomics
I medicine
I meteorology
I sociology
I marketing
I food science
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Classical linear regression

Classical linear regression
(conditional expected value)
estimation of the conditional mean of a
response variable (y) distribution as a
function of a set X of predictor variables

Cons:
Heteroscedastic relationships
Presence of outliers
Skewed dependent variable

Pros
gives a parsimonious
description of the dependent
relationship
estimators with several
properties
...
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Classical vs quantile linear regression

Classical linear regression
(conditional expected value)
estimation of the conditional mean of a
response variable (y) distribution as a
function of a set X of predictor variables

E(y | X) = Xβ

Quantile regression
(conditional quantiles)
estimation of the conditional quantiles of a
response variable (y) distribution as a
function of a set X of predictor variables

Qθ(y | X) = Xβ(θ)

where: (0 < θ < 1)

(Koenker R., Basset G. 1978) (Koenker R. 2005)
(Koenker R. quantreg R package 2018)

(Davino C., Furno M., Vistocco D. 2013) (Furno M., Vistocco D. 2018)
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Quantile Regression model
QR model for a given conditional quantile θ (linear regression):

Qθ(y|X) = Xβ(θ)

where
0 < θ < 1
Qθ(.|.) denotes the conditional quantile function for the θth quantile

Classical regression focuses on E(y|X)
QR extends this approach to study the conditional distribution of a
response variable
θ regression lines are estimated
The estimation of coefficients for each quantile regression is
based on the whole sample, not just the portion of the sample at
that quantile
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Two examples with simulated data

homogeneous model heterogeneous model
y1 = 1 + 2x + e y2 = 1 + 2x + (1 + x)e
x ∼ N(10;1) e ∼ N(0;1) x ∼ N(10;1) e ∼ N

(
(−1 + 20x);ex/3

)
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OLS results

homogeneous model heterogeneous model
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OLS and QR results

homogeneous model
OLS θ= 0.1 θ= 0.25 θ= 0.5 θ= 0.75 θ= 0.9

intercept 0.5 -0.5 -0.7 0.4 1.6 1.2
x 2.0 2.0 2.1 2.1 2.0 2.1

heterogeneous model
OLS θ= 0.1 θ= 0.25 θ= 0.5 θ= 0.75 θ= 0.9

intercept -2092.0 -697.2 -1312.7 -1772.2 -2340.6 -2709.7
x 432.1 247.1 331.8 398.3 480.4 538.3

C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 16 / 110



OLS and QR results
homogeneous model
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Quantile Regression model
Interpretation

β̂i(θ) =
∂Qθ(y|X)

∂xi

Rate of change of the θth quantile of the dependent variable per unit
change in the value of the i th quantile

Fitted values reconstruct the conditional quantiles

QR generalizes univariates quantiles for conditional distributions

QR pros:

Regressor effects on the whole dependent variable distribution

Heteroscedastic relationships

Presence of outliers

Skewed dependent variable

C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 18 / 110

A simple example: the ‘93cars’ dataset
93 new cars for the 1993 model year
selected measures: Price, Origin (USA , non-USA), Horsepower
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Source
Lock, R. H. (1993) 1993 New Car Data. Journal of Statistics Education 1(1).

http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
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A simple example: the ‘93cars’ dataset
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Slopes: rate of change of the
y θth conditional quantile per
unit change of the regressor

Fitted values reconstruct the
conditional quantiles

QR generalizes univariates
quantiles for conditional
distributions

USA non-USA uncond. intercept slope
Mean 18.6 20.5 19.5 18.6 1.9
θ=0.25 13.5 11.6 12.2 13.4 -1.8
θ=0.5 16.3 19.1 17.7 16.3 2.8
θ=0.75 20.7 26.7 23.3 20.8 5.9
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The quantile process and the selection of the quantiles

QR solutions are typically computed for a selected number of
quantiles
It is possible to obtain estimates across the entire interval of
conditional quantiles
A dense grid of equally spaced quantiles provides a fairly accurate
approximation of the whole quantile regression pattern
The number of distinct quantiles is related to: the number of units
and the number of variables
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Part 1: Quantile Regression
Estimation
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Unconditional mean and quantiles
QR is to classical regression what quantiles are to mean in terms of

describing locations of a distribution

Let Y be a generic random variable:
Mean (and its objective function): µ = arg minc E(Y − c)2

Median (and its objective function): Me = arg minc E |Y − c|
Generic quantile θ (and its objective function):

qθ = arg min
c

E [ρθ(Y − c)]

- µ̂ e M̂e denotes the sample estimators for such centers
- ρθ(.) denotes the following location functions:

ρθ(y) = [θ − I(y < 0)]y

= [(1− θ)I(y ≤ 0) + θI(y > 0)]|y |

- ρθ(.) is an asymmetric absolute loss function; that is a weighted sum of absolute
deviations, where a (1− θ) weight is assigned to the negative deviations and a θ
weight is used for the positive deviations.C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 23 / 110

On optimal criteria
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Conditional mean and conditional quantiles estimation
Least squares linear regression estimator

β̂ = arg min
β

E [y− Xβ)]2

Conditional quantile linear regression estimator

β̂(θ) = arg min
β

E [ρθ(y− Xβ)]

Note: the (θ)–notation denotes that the parameters and the corresponding estimators
are for a specific quantile θ
ρθ(.) is an asymmetric absolute loss function; that is a weighted sum of absolute
deviations, where a (1− θ) weight is assigned to the negative deviations and a θ
weight is used for the positive deviations.

ρθ =

{
θ (u) if u > 0
(θ − 1) u if u ≤ 0
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On the objective function

θ=0.25
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On the objective function

θ=0.75
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The linear programming formulation of the QR problem

Wagner (1959) proved that the least absolute deviation criterion
can be formulated as a linear programming technique and then
solved efficiently exploiting proper methods and algorithms
Koenker and Basset (1978) pointed out how conditional quantiles
could be estimated by an optimization function minimizing a sum
of weighted absolute deviations, using weights as asymmetric
functions of the quantiles
The linear programming formulation of the problem was therefore
natural, offering researchers and practitioners a tool for looking
inside the whole conditional distribution apart from its center
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Methods for solving the linear programming problem

The simplex method (Dantzig, 1947) is the widespread solution for the linear programming
problem

It is an iterative process, starting from a solution that satisfies the imposed constraints and
looking for new and better solution

The process iterates until a solution that cannot be further improved is reached, moving
along the edges of the simplex corresponding to the feasible set

For the QR problem, the efficient version of the simplex algorithm, proposed by Barrodale
and Roberts (1974) and adapted by Koenker e D’Orey (1987) to compute conditional
quantiles, is typically used with a moderate size problem

The simplex method is the default option in most of the QR software

A completely different method approaches the solution from the interior of the feasible set
rather than on its boundary, that is starting in the zone where all the inequalites are strictly
satisfied

Such methods, called interior–point methods, have their roots in the seminal paper of
Karmakar (1984) and are usually superior on very large problems

The QR solution using interior–point methods has been proposed by Portnoy e Koenker
(1997)

A heuristic approach (finite smoothing algorithm) has been proposed by Chen (2004,
2007): it is faster and more accurate in the presence of a large number of covariates
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Part 1: Quantile Regression
Inference
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Main approaches to inference in QR

Small sample theory
(Koenker and Basset, 1978)
“The practical of this theory would entail a host of hazardous assumptions and
an exhausting computational effort” (Koenker, 2005)

Asymptotic theory
(Koenker and Basset, 1978, 1982a,b)

Rank–based theory
(Gutenbrunner and Jureckova, 1992) (Gutenbrunner , 1993)

Resampling methods
(Parzen , 1994) (He and Hu, 2002) (Kocherginsky, 2003, 2005)

C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 31 / 110

Main approaches to inference in QR

Small sample theory
(Koenker and Basset, 1978)
“The practical of this theory would entail a host of hazardous assumptions and
an exhausting computational effort” (Koenker, 2005)

Asymptotic theory
(Koenker and Basset, 1978, 1982a,b)

Rank–based theory
(Gutenbrunner and Jureckova, 1992) (Gutenbrunner, 1993)

Resampling methods
(Parzen, 1994) (He and Hu, 2002) (Kocherginsky, 2003, 2005)

C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 32 / 110



Asymptotic theory
Qθ(ŷ|x) = β̂0(θ) + β̂1(θ)x

“under mild regularity conditions”
⇓

Asymptotic distribution of the estimator:

1 case of i.i.d. errors

√
n
[
β̂ (θ)− β (θ)

]
→ N

(
0, $2 (θ)J−1

)
2 case of i.ni.d. errors

√
n
[
β̂ (θ)− β (θ)

]
→ N

(
0, θ (1− θ)H (θ)−1 JH (θ)−1

)
The error distribution affects the variance–covariance matrix

of the QR estimator
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Main approaches to inference in QR

Asymptotic theory

β̂ (θ)− β (θ)
SE(β̂ (θ))

→ N (0,1)

standard errors are simpler
and easier to describe under
the i.i.d. model
it is quite complex to deal with
the ni.i.d. case, as the errors
no longer have a common
distribution

Bootstrap approach
useful when the assumptions
for the asymptotic procedure
do not hold
easy to compute standards
errors
flexible to obtain standard
error and confidence interval
for any estimates and
combinations of estimates
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Resampling methods in QR

xy -pair or design matrix bootstrap method (Kocherginsky, 2003)

method based on pivotal estimation functions (Parzen, 1979)

markov chain marginal bootstrap (He and Hu, 2002)
(Kocherginsky, 2003) (Kocherginsky et al. 2005)
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xy -pair method: a single quantile θ

Simple quantile regression model

Qθ(ŷ|x) = β̂0 + β̂1(θ)x (1)

Bootstrap estimate: β̂(θ) = 1
B
∑B

b=1 β̂b(θ)

Bootstrap standard error: se
(
β̂j(θq)

)
C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 36 / 110



Part 1: Quantile Regression
Equivariance properties
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Equivariance properties

scale equivariance
shift or regression equivariance
equivariance to reparametrization of design
equivariance to monotone transformations
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Equivariance to monotone transformations

Qθ(ŷ|x) = β̂0(θ) + β̂1(θ)x

where h(.) is a non decreasing function in <

Qθ

[
ĥ(y)|x

]
= h (Qθ(ŷ|x))

The quantiles of the transformed y variable are the transformed quantiles of the
original ones

appropriate selection of h(.) corrects different kinds of skewness

The logarithmic transformation might be very hazardous in terms of the
inference results of an OLS regression (Manning 1998) whereas it may aid the
statistical inference of QR (Cade and Noon 2003)
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Part 1: Quantile Regression
Assessment
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QR assessment

Quantile regression models are estimated minimizing the absolute
values of weighted residuals, as opposed to minimizing the sum of
squared errors in OLS
The R2 is not an applicable goodness-of-fit measure
Methods available for evaluating goodness-of-fit in quantile
regression allow to compare model fit among nested model but
they are not comparable to standard coefficients of determination

Koenker R. and Jose A.F. Machado. Goodness of Fit and Related Inference Processes for

Quantile Regression J. of Am Stat. Assoc, (1999), 94, 1296-1310
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QR assessment
Model: Qθ(ŷ|x) = β̂0(θ) + β̂1(θ)x

Residual absolute sum of weighted differences:

RASWθ =
∑

yi≥β0(θ)+β1(θ)xi

θ |yi − β0(θ)− β1(θ)xi |+

∑
yi<β0(θ)+β1(θ)xi

(1− θ) |yi − β0(θ)− β1(θ)xi |

Model: Qθ(ŷ) = β̂0(θ)

Total absolute sum of weighted differences:

TASWθ =
∑

yi≥θ̂
θ
∣∣∣yi − θ̂

∣∣∣+∑yi<θ̂
(1− θ)

∣∣∣yi − θ̂
∣∣∣

pseudoR2
θ = 1− RASWθ

TASWθ
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Part 1: Quantile Regression
An empirical analysis
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An empirical analysis

The aim of the analysis
Evaluate if and how

the student features
(socio-demographic and University experience attributes)

affect the outcome of the University career (degree mark) in case of
unobserved group heterogeneity
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The dataset

The evaluation of University educational processes
random sample of 362 students graduated at University of
Macerata (Italy)
dependent variable: degree mark (110 scores excluded)
7 regressors related to the student profile:

- gender
- place of residence during University (Macerata and its

province, Marche region, outside Marche)
- course attendance (no attendance, regular)
- foreign experience (yes, no)
- working condition (full time student, working student)
- number of years to get a degree
- diploma mark
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The dataset
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OLS and QR coefficients

OLS θ=0.10 θ=0.25 θ=0.50 θ=0.75 θ=0.90
(Intercept) 101.78 100.12 101.08 102.19 103.60 106.45
Gender = Male -3.42 -1.94 -3.92 -4.12 -2.60 -1.38
Place of residence = Marche region 0.95 0.89 1.69 1.33 1.05 0.17
Place of Residence = outside Marche -2.51 -8.19 -2.50 -2.04 -0.95 -0.79
Courses attendance = regular 1.87 2.52 0.92 2.34 1.25 1.25
Working student = yes -0.20 0.62 0.42 -0.21 -0.60 -0.31
Numbers of years to get a degree -0.82 -1.27 -1.42 -0.88 -0.35 -0.17
Diploma mark 0.06 0.01 0.08 0.07 0.05 0.02
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Heterogeneity

Part 1: Quantile Regression
Basic insights
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Unsupervised approach
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Handling heterogeneity among units

Identification of group effects in a regression model
Unsupervised approach
Supervised approach

CLUSTERING & MODELING:
Identifying a typology in a dependence model

Identifying groups of units characterized by similar dependence
structures

Discovering the best model for each group

Testing differences among groups
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A simple example
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The main steps

1 Identification of the global dependence structure

2 Identification of the best model for each unit

3 Clustering units

4 Modeling groups

5 Testing differences among groups
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Basic notation

The data structure
n units
p regressors
1 quantitative or ordinal dependent variable
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Basic notation
The data structure

n units
p regressors
1 quantitative or ordinal dependent variable
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A working example: 2 groups

Structure of the two groups

group 1 group 2
sample size n1 = 30 n2 = 70
regressor x1 ∼ N(10;1) x2 ∼ N(10;1)
error e1 ∼ N(0;1) e2 ∼ N(0;1)
response variable y1=310+2x1+e y2=250+10x2+e

y =

[
y1
y2

]
x =

[
x1
x2

]
(2)
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A working example

Structure of the two groups
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The proposed approach

1.Identification of the global dependence structure

Qθ(ŷ|X) = XB̂(θ) θ = 1, . . . , k

2.Identification of the best
model for each unit

estimated values
Ŷ = XB̂(θ)

best model identification
θbest

i : argmin
θ=1,...,k

|yi − ŷi(θ)|

best estimates identification
ŷbest
θ
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A working example: 2 groups

1. Global estimation
Qθ(ŷ|X) = XB̂(θ)

2. Identification of the best
model for each unit

1 estimated values
Ŷ = XB̂(θ)

2 best model identification
θi : argmin

θ=1,...,k
|yi − ŷi(θ)|

3 best estimates identification
ŷbest
θ

Distribution of the dependent variable:

observed (left panel), LS estimated (middle

panel), best QR estimated (right panel)
observed OLS QR
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The proposed approach

3. Clustering units
finding the best partition of the
θbest vector
identification of the group
reference quantile
gθ

best , for g = 1,G
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3. Clustering units

Finding the best partition of the θbest vector

θbest is partitioned into D groups (e.g. according to the deciles)
identification of a reference quantile for each of the D groups:

dθ
best

=

∑nd
i=1 θ

best
i

nd

(d = 1, . . . ,D)

estimate D quantile regression models with θ =
[

1θ
best

, . . . ,D θ
best
]
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A working example: 2 groups

3. Clustering units

Finding the best partition of the θbest vector: a solution

θbest is partitioned according to its deciles (d = 1, . . . ,D)

θ−best
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3. Clustering units

Finding the best partition of the θbest vector

θbest is partitioned according to its deciles (d = 1, . . . ,D)
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A working example: 2 groups

3. Clustering units

Finding the best partition of the θbest vector
identification of a reference quantile for each of the D groups:

quantile value dθ
best

0.1 0.108 0.046
0.2 0.198 0.148
0.3 0.297 0.246
0.4 0.396 0.345
0.5 0.490 0.435
0.6 0.594 0.545
0.7 0.700 0.642
0.8 0.792 0.750
0.9 0.891 0.845

estimate D quantile regression models
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3. Clustering units

Finding the best partition of the θbest vector
test whether the slopes of pairs of consecutive models are
identical

Joint Test of Equality of Slopes
Koenker R.W. and Basset G. 1982 Robust tests for heteroscedasticity based on regression

quantiles. Econometrica 50(1)

group units if their reference quantiles do not provide significantly
different coefficients

identification of the group reference quantile
gθ

best , for g = 1,G
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Heteroschedasticity test

Qθi (ŷ|x) = β̂0(θi) + β̂1(θi)x
Qθj (ŷ|x) = β̂0(θj) + β̂1(θj)x

H0 : β1(θi) = β1(θj)

Test Statistic:

T =

[
β̂1(θi)− β̂1(θj)

]2

var
[
β̂1(θi)− β̂1(θj)

] ∼ χ2
1gdl (3)

where var
[
β̂1(θi)− β̂1(θj)

]
=

var
[
β̂1 (θi)

]
+ var

[
β̂1
(
θj
)]
− 2cov

[
β̂1 (θi) β̂1

(
θj
)]

A possible solution to estimate var
[
β̂1(θi)− β̂1(θj)

]
: bootstrap
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A working example: 2 groups

3. Clustering units

Finding the best partition of the θbest vector
sequentially test if the slope coefficients of the models are
identical

quantile value dθ
best

p-value
0.1 0.108 0.046 0.853
0.2 0.198 0.148 0.872
0.3 0.297 0.246 0.000
0.4 0.396 0.345 0.758
0.5 0.490 0.435 0.975
0.6 0.594 0.545 0.489
0.7 0.700 0.642 0.152
0.8 0.792 0.750 0.660
0.9 0.891 0.845 0.912
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A working example: 2 groups

3. Clustering units

Finding the best partition of the θbest vector
group units if their reference quantiles provide not significantly
different coefficients

quantile value dθ
best

p-value group ng

0.1 0.108 0.046 0.853 1 30
0.2 0.198 0.148 0.872
0.3 0.297 0.246 0.000
0.4 0.396 0.345 0.758 2 70
0.5 0.490 0.435 0.975
0.6 0.594 0.545 0.489
0.7 0.700 0.642 0.152
0.8 0.792 0.750 0.660
0.9 0.891 0.845 0.912
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A working example: 2 groups

3. Clustering units

Finding the best partition of the θbest vector
identification of the group reference quantile

quantile value dθ
best

p-value group ng gθ
best

0.1 0.108 0.046 0.853 1 30 0.147
0.2 0.198 0.148 0.872
0.3 0.297 0.246 0.000
0.4 0.396 0.345 0.758 2 70 0.649
0.5 0.490 0.435 0.975
0.6 0.594 0.545 0.489
0.7 0.700 0.642 0.152
0.8 0.792 0.750 0.660
0.9 0.891 0.845 0.912
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The proposed approach

4. Modeling groups

Qθ(ŷ|X) = XB̂(gθ
best)

5. Testing differences among groups
Testing if all the slope coefficients of the groups are identical
Separate testing on each slope coefficient

Koenker R.W. and Basset G. 1982 Robust tests for heteroscedasticity based on regression

quantiles. Econometrica 50(1)
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A working example: 2 groups

4. Modeling groups

θ = 0.145 θ = 0.640
group 1 group 2

intercept 313.11 248.19
x 1.71 10.19
original model y1=310+2x1+e y2=250+10x2+e

Percentage of Correct classification (%CC)=100%
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An empirical analysis

The aim of the analysis
Evaluate if and how

the student features
(socio-demographic and University experience attributes)

affect the outcome of the University career (degree mark) in case of
unobserved group heterogeneity
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The dataset

The evaluation of University educational processes
random sample of 362 students graduated at University of
Macerata (Italy)
dependent variable: degree mark (110 scores excluded)
7 regressors related to the student profile:

- gender
- place of residence during University (Macerata and its

province, Marche region, outside Marche)
- course attendance (no attendance, regular)
- foreign experience (yes, no)
- working condition (full time student, working student)
- number of years to get a degree
- diploma mark
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The dataset
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1.Identification of the global dependence structure
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LS and QR coefficients

Step 1:
Qθ(ŷ|X) = XB̂(θ) θ = 1, . . . , k
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Step 2: Identification of the best model for each unit
observed OLS QR
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Distribution of the:

dependent variable
(left panel)

LS estimated dependent
variable (middle panel)

best QR estimated
dependent variable
(right panel)

Step 2:
estimated values: Ŷ = XB̂(θ)

best model identification
θbest

i : argmin
θ=1,...,k

|yi − ŷi (θ)|

best estimates identification: ŷbest
θ

C. Davino (University of Naples) Handling heterogeneity in QR Paris, April 2019 82 / 110

Step 3: Clustering units

quantile value dθ
best

p-value group ng gθ
best

0.1 0.090 0.036 0.412 1 182 0.246
0.2 0.190 0.145 0.170
0.3 0.293 0.250 0.842
0.4 0.400 0.341 0.631
0.5 0.490 0.444 0.000
0.6 0.596 0.547 0.322 2 109 0.650
0.7 0.690 0.636 0.168
0.8 0.790 0.747 0.008
0.9 0.889 0.844 0.298 3 71 0.896

Step 3:
partitioning of θbest

identification of the group reference
quantile

gθ
best , for g = 1,G
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Step 3: Clustering units
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Step 3: Clustering units
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θbest
1 =0.246

θbest
2 =0.649

θbest
3 =0.896
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Step 4: Modeling groups
QR coefficients with group effects

Variable OLS G1 G2 G3
θ = 0.246 θ = 0.649 θ = 0.896

Intercept 101.35 102.74 101.43 106.43
gender (Male) -3.71 -5.04 -3.61 -1.14
place of residence (Marche region) 0.81 1.64 0.88 0.25
place of residence (outside Marche) -2.53 -3.60 -0.63 -0.64
courses attendance (regular) 1.72 0.99 1.83 1.40
foreign experience (yes) 2.95 3.38 1.09 0.76
working student -0.24 -0.17 -0.49 -0.14
years to get a degree -0.83 -1.22 -0.52 -0.25
diploma mark 0.06 0.04 0.07 0.02
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Step 4: Modeling groups
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Step 4: Modeling groups
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Step 4: Qθ(ŷ|X) = XB̂(gθ
best )



Step 4: Modeling groups
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Step 5: Testing differences among groups

Testing if all the slope coefficients of the groups are identical
p-values

G1 G2 G3 G1;G2;G3
G1 0.001021 0.000000
G2 0.000329
G3 0.000000

Separate testing on each slope coefficient
g1 vs g2 g2 vs g3 g1 vs g3

gender (Male) 0.114 0.003 0.000
place of residence (Marche region) 0.202 0.131 0.024
place of residence (outside Marche) 0.051 0.990 0.081
courses attendance (regular) 0.253 0.484 0.599
foreign experience (yes) 0.005 0.646 0.000
working student 0.609 0.436 0.969
years to get a degree 0.008 0.115 0.000
diploma mark 0.341 0.006 0.549
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Recap & Pros

Clustering units taking into account the dependence structure
Estimation of the group dependence structure using the whole
sample

Impact of the regressors on the entire conditional distribution

Clarity of the final results

Availability of classical inferential procedures to test differences
among groups
Number of groups defined by the procedure

Exact solution method
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Further developments

Explore alternatives to partition th θbest vector

Introduce cluster validation statistics

Simulation study

Comparison with competitive methods
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A simulation study

Exploring the robustness of the method with respect to:
1 the degree and type of overlapping among the groups;
2 the cardinality of each group (equal or unbalanced);
3 the sample size.

case of one regressor and two groups

Generation of a set of scenarios:
Case 1 : parallel group structures;
Case 2 : group structures crossing outside the considered range

of the regressor;
Case 3 : group structures crossing inside the considered range of

the regressor.
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Comparison with competitive methods

Clusterwise linear regression
It is a useful technique when heterogeneity is present in the data
It identifies both the partition of the data and the relevant
regression models, one for each cluster.
It estimates simultaneously the classes and the parameters of the
models which are considered different on each class
Number of classes a-priori defined
Not exact solution method
Performance is sensitive to the initial partition and outliers
Overlapping among groups
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A comparison with the ‘votes’ dataset
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A comparison with the ‘votes’ dataset
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Comparison with alternative methods

Research questions to be explored

How to compare results?
What are other alternative methods?
....
....
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Handling heterogeneity among units

Identification of group effects in a regression model
Unsupervised approach
Supervised approach

Comparison with alternative methods
Estimation of different models for each group
Introduction of a dummy variable
Multilevel modeling
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Outline

Heterogeneity

Part 1: Quantile Regression
Basic insights

Estimation

Inference

Properties

Assessment

Part 2: My recent research on handling heterogeneity
Unsupervised approach

Supervised approach

Quantile Composite-based Path Model
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Concluding remarks: motivation

Motivation (Mosteller and Tukey, 1977)
What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of X’s.
We could go further and compute several different regression curves
corresponding to the various percentage points of the distributions and
thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a
single distribution, so the regression curve gives a correspondingly
incomplete picture for a set of distributions.
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Concluding remarks: motivation

QR is capable of providing a more complete, more nuanced view of
heterogeneous covariate effects (Koenker et al., 2017)

Caution
QR offers information on the whole conditional distribution of the
response variable, allowing us to discern effects that would otherwise
be judged equivalent using only conditional expectation.
Nonetheless, the QR ability to statistically detect more effects can not
be considered a panacea for investigating relationships between
variables: in fact, the improved ability to detect a multitude of effects
forces the investigator to clearly articulate what is important to the
process being studied and why.
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Books on Quantile Regression
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Books on Quantile Regression
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