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What is PLS? 
 It is an acronym standing for Partial Least Squares 

 It refers to a family of ALGORITHMS implementing a 
suite of METHODS of multivariate analysis for analyzing 
one, two or several blocks of variables  

 All these algorithms are iterative algorithms 

 These algorithms consist of various extensions of the 
Nonlinear estimation by Iterative PArtial Least Squares 
(NIPALS) algorithm  
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Nonlinear Iterative Partial Least Squares 

NIPALS (Wold H., 1966), algorithm is an iterative algorithm 
for implementing a PCA to a block X of variables. 

The peculiarity of this algorithm is that it calculates principal 
components by means of an iterative sequence of simple 
ordinary least squares (OLS) regressions.  

This feature enables us to overcome computational problems 
due to missing data or landscape data matrices, i.e. matrices 
having more columns than rows. 
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NIPALS Algorithm 

w(1) t(1)
	


tstart	


w(1) ∝X 't(1)

t(1) = Xw(1)

Deflation: Find E1(1) as the residual matrix of the regression of X on t(1) 
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n 
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The PLS family 
 By using NIPALS-based algorithms, i.e. PLS algorithms, 

applied on one or several blocks of variables is possible to 
perform a large number of well known MDA methods, 
such as: 
  PCA (Hotelling, 1933) 

  CCA (Hotelling, 1936) 

  Tucker Interbactery Analysis (Tucker, 1958) 

  Redundancy Analysis (Van de Wollenberg, 1977)  

  Horst and Carroll GCCA (Horst,1965; Carroll, 1968) 

  Multi-tables analysis (Kettenring, 1971) 

  Analyse Factorielle Multiple (Escofier, 1994)   
               ….. among others 

Giorgio Russolillo�
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 PLS Regression models 
 (PLS-R) 

–  2 blocks of variables (X1, X2) 
 (at least originally, then  
 L-PLSR, U-PLSR, etc.) 

–  Component-based Regularized 
regression tool  

–  Chemometrics and related areas, 
Biometrics, Anthropology 

–  Some references:  
 (non exhaustive list) 

•  Wold S., Martens H. and Wold H., 1983 
•  Martens H. and Næs T. , 1991 
•  Tenenhaus M., 1998 

 PLS Path Modeling 
 (PLS-PM) 

–  Several blocks of variables (X1,…, XQ) 
linked by interdependent regressions 

–  Predictive approach to network of 
dependence relationships (SEM), 
hierarchical models (MTA) 

–  Econometrics, Social Sciences, 
Marketing, Strategic Management 

–  Some references: (non exhaustive list) 
•  Wold H., 1982, 1985, 1966, 1975, 1977 
•  Fornell C., Bookstein F.L., 1982 
•  Lohmöller J.B., 1987, 1989 
•  Chin W.W., 1998 
•  Tenenhaus M. et al., 2005 
•  Esposito Vinzi V. et al., 2010 

The two PLS cultures 
Giorgio Russolillo�
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PLS-R Algorithm 

w1(1)	


w2(1)	
 t1(1)	


t2(1)	


t2
start	


t1(1) = X1w1(1)

t2(1) = X2w2(1) w2(1)
' w2(1)

w(1) ∝X1
' t22(1)

w2(1) = X2
' t1(1) t1(1)

' t1(1)

Deflation: 
 Find E1 and F1 as the residual matrix of the regressions of X1 and X2 on t1(1) 

Iteration 

Giorgio Russolillo�



CNAM – Paris, 4/5/2011�

8/45 

PLS Regression criterion 

Research of H (chosen by cross-validation) orthogonal components 
t1(h) = X1w1(h) and t2(h) = X2w2(h)  as correlated between them as 
possible and explanatory of their own groups. 

Cov2(t1(h) , t2(h)) =  	

Cor2(t1(h) , t2(h)) * Var(t1(h)) * Var(t2(h)) 	


PLS2 regression leads to a compromise between a canonical 
correlation analysis  between Y and X and two principal 
component analyses of  X (orthogonal) and Y (oblique = non 
orthogonal components). 

Giorgio Russolillo�
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PLS-R is useful for.. 

1.  Prediction (Regression equation)	


2.  Visualization (PLS = Projection on Latent Structures)	


3.  Regularization (Full component PLS1 coefficients = OLS 
coefficients)	


Giorgio Russolillo�
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Structural Equation Models: notations 

ξ1 

ξ3 

ξ2 

x11 

x21 

x31 

x12 

x13 

x22 

x23 

x33 

x43 

x53 

•  P manifest variables (MVs )observed on N units 

•  Q latent variables  (LVs) 

•  Q blocks composed by each LV and the corresponding MVs 

€ 

pq
q=1

Q

∑ = P

xpq generic MV 

ξq  generic LV 

in each q-th block pq manifest variables xpq , with  

Inner or Structural model 
Outer or Measurement model 

Path 
Coefficients 

β1  

β2 w12 

w22 

External 
Weights 

Giorgio Russolillo�



CNAM – Paris, 4/5/2011�

11/45 

Structural Equation Models: inner model 

The structural model describes the 
causations among the latent variables. 

where: 
- Βmj is the path-coefficient linking the m-th LV to the j-th endogenous 
LV 
- M is the number of the explanatory LVs impacting on ξj 

ξ1 

ξ3 

ξ2 

For each endogenous LV in the model it can be written as: 

β13 

β23 

Giorgio Russolillo�
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Structural Equation Models: outer model 

•  OLS simple regressions  not affected by 
multicollinearity 

•  LV is a principal component of its MV’s 
(minimizes outer residual variances) under the 
constraint of being the best neighbor of its 
adjacent LV’s (minimizes inner residual 
variances)  

•  OLS multiple regression  affected by 
multicollinearity 

•  LV is the best predictor of its MV’s under 
the constraint of minimizing the trace of the 
residual variances in the structural model  

•  Aim at minimizing residuals in structural 
relationships (explanation of unobserved 
variance)  

Mode A 

Mode B 

ξq = ωpqx pq
p=1

pq

∑ +δq

€ 

x pq = λpqξq + εpq

Latent Construct 
ξq 

Emergent Construct  
ξq 

x1q x2q x3q x4q x1q x2q x3q x4q 

ω1q 
ω2q ω3q 

ω4q 
λ1q λ2q λ3q 

λ4q 

Loadings Weights 
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tq ∝Xqwq

PLS-PM Algorithm (Mode A) 
Outer Estimation"

In
iz

ia
liz

at
io

n"

After convergence: OLS simple/multiple regressions on LV scores for path coefficients	  

Giorgio Russolillo�

wq = 1 / n( )Xq
' zq

t1	


tq’	


zq	


e1q	


e2q	


eqʼq!

t2	


*Choice of inner weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlation 
           coefficients 
-  Path weighting scheme: 

 OLS regression coefficients 
            or correlations 

wqq
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PLS-PM Algorithm (New Mode A) 
Outer Estimation"

In
iz

ia
liz

at
io

n"

After convergence: OLS simple/multiple regressions on LV scores for path coefficients	  

Giorgio Russolillo�

t1	


tq’	


zq	


e1q	


e2q	


eqʼq!

t2	


*Choice of inner weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlation 
           coefficients 
-  Path weighting scheme: 

 OLS regression coefficients 
            or correlations 

wq ∝ 1 / n( )Xq
' zq

tq = Xqwq

wqq
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Three PLS Criteria 

•  NIPALS: 

€ 

argmax
w =1

var Xw( ){ }

€ 

argmax
w1 = w 2 =1

cov2 X1w1,X2w2( ){ }

€ 

argmax
w q =1

cqq'g cov Xqwq,Xq 'wq'( )( )
q≠q'
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

        (Tenenhaus& Tenenhaus,  2009)

Giorgio Russolillo�
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•  Full New Mode A PLS-PM (Wold algorithm): 
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Giorgio Russolillo�PLS algorithms: the joining ring (1) 

€ 

q∈ 1,2{ };  q ≠ q'   

€ 

q∈ 1,2,…,Q{ };  q ≠ q'
e qq’  is the generic element of a squared matrix of order 
Q that is null if x q’ is connected to x q; otherwise, it 
represents the corresponding inner weight. 

Each iteration of a PLS algorithm can be resumed in three steps: 

1.  Compute weights 

2.  Normalize weights 

3.  Calculate the score vector(s) 



CNAM – Paris, 4/5/2011�

17/45 

PLS algorithms: the joining ring (2) 
In all of the previously showed PLS methods, when working on standardized 

variables, weights are calculated as Pearson’s product-moment 
correlation coefficients between each variable and a latent construct. 

In homage to what Hayashi called External Criterion in its quantification 
methods, we call this latent construct Latent Criterion (LC, noted as γ)  

For each PLS method different LCs are considered: 

•  In NIPALS, the LC to bear in mind is the first PC. 
•  In PLS-R, we have to keep into account two LCs: the vector scores in 

predictor space for the response variables and the vector score in response 
space for the independent variables. 

•  In new Mode A PLS-PM, a LC is considered for each block of manifest 
variables, i.e. the corresponding inner estimate. 

€ 

wpq ∝cor x pq,γ q( )

Giorgio Russolillo�
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A limit of PLS methods 
This leads to two basic hypotheses underlying PLS models: 
•  Each variable is measured on a interval (or ratio) scale. 
•  Relations between variables and latent constructs are linear 

and, consequently, monotone. 

As a consequence, standard PLS methods cannot handle 
data which are measured on a scale which does not have 
metric properties, nor non-linear relations. 

Giorgio Russolillo�
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Giorgio Russolillo�

Solution: the Non-Metric approach 

A new class of PLS algorithms making the PLS iteration able to work as optimal 
scaling algorithms, calculating iteratively both scaling and model parameters: 
we name them 

 because they are able to provide optimally scaled data (  ) with a new metric 
structure, which does not depend on the metric properties of the raw data (X∗). 
In other words, NM-PLS methods yield a metric to non-metric data, and a new 
metric to metric data, linearizing the relations between variables and latent 
constructs, as required by the hypothesis of standard PLS models. 

These methods could be named non-linear PLS methods as well, since they 
discard the intrinsic linearity hypothesis of standard PLS methods. 

€ 

ˆ X 
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Optimal Scaling 

According to Young [1981], “Optimal scaling (OS) is a data analysis 
technique which assigns numerical values to observation categories 
in a way which maximizes the relation between the observations and 
the data analysis model while respecting the measurement character 
of the data” 

Hence, scalings provided by OS methods are optimal, if they satisfy two 
conditions: 

•  they optimize the same criterion of the analysis in which the Optimal 
Scaling is involved 

•  they respect the constraints defining which properties of the original 
measurement scale we want to preserve. 

Giorgio Russolillo�
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NM-PLS algorithms optimize NIPALS, PLS-R and New Mode A PLS-PM 
criteria under two sets of parameters: the model parameters and the scaling 
parameters, constrained to the restrictions due to the scaling level chosen 
for each raw variable x∗ 

Non-Metric PLS criteria 
Giorgio Russolillo�

•  NM-NIPALS: 

€ 

argmax
w =1,

var( ˆ x p =1)

var ˆ X w( ){ }

€ 

argmax
w1 = w 2 =1,

var( ˆ x p1 )=var( ˆ x p 2 )=1

cov2 ˆ X 1w1, ˆ X 2w2( ){ }

€ 

argmax
w q =1,

var( ˆ x pq )=1
∀p,q

cqq'g cov ˆ X qwq, ˆ X q 'wq'( )( )
q≠q'
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

•  NM-PLSR: 

•  Full New Mode A 
NM-PLSPM

(Wold algorithm): 
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NM-PLS methods satisfy model criteria under three possible levels of 
scaling analysis: 

Nominal 
 Ordinal 

Polynomial 

To each level of scaling analysis, it corresponds an ad hoc scaling 
function. 

Non-Metric PLS scaling levels 
Giorgio Russolillo�
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Nominal scaling and its properties 

•  In a nominal analysis, a variable is quantified as orthogonal projection 
of γ in the space spanned by the columns of the indicator matrix  

     (Richardson & Kuder, 1933): 

•  Quantification function          optimizes model criterion while 
respecting the grouping constraint that, for each pair of observations i 
and i’: 

 Relation between γ  and x∗ in terms correlation ratio can be expressed 
as Pearson’s correlation coefficient between the scaled variable and 
γ: 	


 
Q Xn ,γ( ) = Xn Xn' Xn( )

−1 Xn'γ

€ 

xi
* ~ xi '

*( )⇒ ˆ x i = ˆ x i '( )

 
Q Xn ,γ( )

 
Xn

€ 

cor( ˆ x ,γ ) =η
γ |x*

Giorgio Russolillo�
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Ordinal scaling and its properties 
•  In a ordinal analysis, a variable is quantified as orthogonal projection 

of γ in the space spanned by the columns of the indicator matrix    , 
built by Kruskal’s secondary least squares monotonic transformation 

•  Quantification function                optimizes model criterion under the 
order constraint that, for each pair of observations i and i’: 

 Relation between γ and   in terms of linear correlation can be 
interpreted as a measure of the approaching monotonicity of the 
relation between  x∗ and the LC, as it is strictly related to Kruskal’s 
STRESS index 

 
Q Xo ,γ( ) = Xo Xo' Xo( )

−1 Xo'γ

€ 

xi
* ~ xi '

*( )⇒ ˆ x i = ˆ x i '( )   

€ 

xi
*  xi '

*( )⇒ ˆ x i ≤ ˆ x i '( )and 

 
Xo

 
Q Xo ,γ( )

Giorgio Russolillo�
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Polynomial scaling and its properties 
•  In functional scaling we suppose that we know the degree D of a 

polynomial relation between a raw numerical variable and the LC.  

•  Optimal parameters for the polynomial transformation (Young, 1981) 
are found by projecting γ in the conic space spanned by the columns 
of matrix     , built with a row for each observation and with (D + 1) 
columns, each column being an integer power of the vector x∗ 

•  If we suppose that the variable and the LC are linked by a linear 
relation, we just have to put D = 1. If this is the case for all of the 
variables, NM-PLS methods provide the same results of the standard 
PLS methods. 

 Xp

Giorgio Russolillo�
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How to implement all of these scaling 
functions?  

Problem: 
As previously shown, scaling are obtained as a 
function of LCs.. But LCs, on their turn, are 
functions of scaling values! 

Solution: 
 Non-Metric PLS algorithms 

Giorgio Russolillo�
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How do NM-PLS algorithms work? 
In NM-PLS algorithms, model and scaling parameters are alternately optimized 

in a modified PLS loop where a quantification step is added. 
•  In standard PLS steps the model parameters are optimized for given scaling 

parameters. 
•  In the quantification step, instead, the scaling parameters are optimized for 

given model parameters: raw variables are properly transformed through 
scaling functions Q, then they are normalized to unitary variance 

€ 

q∈ 1,2{ };  q ≠ q'   

€ 

q∈ 1,2,…,Q{ };  q ≠ q'
e qq’  is the generic element of a squared matrix of order 
Q that is null if x q’ is connected to x q; otherwise, it 
represents the corresponding inner weight. 

Giorgio Russolillo�
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NM-NIPALS loop 

w(1) 

t(1)
	


tstart	


w(1) ∝ X̂ 't(1)

t(1) = X̂w(1)

X 

 
x̂ p ∝Q X p , t(1)( )

Giorgio Russolillo�
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NM-PLSR loop 

w1(1)	


w2(2)	
 t1(1)	


t2(2)	


t2
start	


t1(1) = X̂1w1(1)
t2(1) = X̂2w2(1) w2(1)

' w2(1)

w1(1) ∝ X̂1
' t2(1)

w2(1) = X̂2
' t1(1) t1(1)

' t1(1)
X2 

X1	
 
x̂ p1∝Q X p1, t2(1)( )

Giorgio Russolillo�
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NM-PLSPM loop (New Mode A) 
Outer Estimation"

Quantification 
step"

Giorgio Russolillo�

(new Mode A) 

€ 

wq ∝ 1/n( ) ˆ X q
' zq

€ 

tq = ˆ X qwq

t1	


tq’	


zq	


e1q	


e2q	


eqʼq!

t2	


Inizialization" zq	


*Choice of inner weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlation coefficients 
-  Path weighting scheme: 

 OLS regression coefficients or 
 correlations 

 
x̂ pq ∝Q X pq ,zq( )
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NM-PLSPM loop (Mode A) 
Outer Estimation"

t1	


tq’	


zq	


e1q	


e2q	


eqʼq!

t2	


Inizialization" zq	


*Choice of inner weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlation coefficients 
-  Path weighting scheme: 

 OLS regression coefficients or 
 correlations 

 
x̂ pq ∝Q X pq ,zq( )

Quantification 
step"

Giorgio Russolillo�
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wq = 1 / n( )X̂q
' zq

tq ∝ X̂qwq
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Flexibility: NM-PLS satisfies model criterion under several levels of scaling, 

depending on the properties of the raw variable we want to retain.  

Non-Metric PLS features 
Giorgio Russolillo�

Interpretability: The weight of a scaled variable can be interpreted as a 
measure of the statistical relation between x∗ and the LV 

Optimality: NM-PLS algorithms optimizes NIPALS, PLS-R and New Mode 
A PLS-PM criteria under two sets of parameters: the model parameters 
and the scaling parameters, constrained to the restrictions due to the 
scaling level chosen for each raw variable x∗ 
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Sensorial data: the Tea dataset 

Obs J1 J2 J3 J4 J5 J6 Temp Sugar Strength Lemon
1 4 2 4 3 13 5 Hot No Str Y
2 2 8 1 9 10 8 Hot One Med Y
3 6 10 13 18 5 6 Hot Two Light N
4 13 13 10 5 2 12 LW No Med N
5 14 16 17 12 16 9 LW One Light Y
6 15 18 12 15 8 16 LW Two Str Y
7 7 3 14 2 18 2 Cold No Light Y
8 11 6 5 7 3 17 Cold One Str N
9 10 11 6 13 12 7 Cold Two Med Y
10 3 1 11 4 6 4 Hot No Light N
11 1 7 2 10 7 14 Hot One Str Y
12 5 12 3 17 9 13 Hot Two Med Y
13 17 14 16 6 11 18 LW No Str Y
14 18 15 9 11 1 11 LW One Med N
15 16 17 18 16 15 10 LW Two Light Y
16 8 4 8 1 14 1 Cold No Med Y
17 9 5 15 8 17 3 Cold One Light Y
18 12 9 7 14 4 15 Cold Two Str N

Giorgio Russolillo�
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Var J1 J2 J3 J4 J5 J6 
Temp(H) -0.35 -0.33 -0.35 -0.16 -0.15 -0.08 

Temp(LW) 0.49 0.51 0.36 0.31 -0.01 0.26 
Temp(C) -0.15 -0.18 -0.01 -0.15 0.15 -0.18 
Sugar(0) -0.21 -0.27 -0.01 -0.22 0.23 -0.26 
Sugar(1) -0.03 -0.02 -0.08 0.01 -0.08 0.04 
Sugar(2) 0.25 0.29 0.09 0.21 -0.15 0.23 

Strenght(S) 0.01 0.05 -0.15 0.10 -0.24 0.16 
Strenght(M) -0.07 -0.05 -0.14 0.01 -0.14 0.05 
Strenght(L) 0.07 -0.01 0.29 -0.11 0.38 -0.21 
Lemon(Y) -0.00 -0.06 0.18 -0.11 0.29 -0.19 
Lemon(N) 0.00 0.06 -0.18 0.11 -0.29 0.19 ✗�

The regression coefficients matrix 
Giorgio Russolillo�
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Mapping the observations on the 
Correlation Circle: the Biplot 

Giorgio Russolillo�
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Image 

Expectation 

Perceived 
Quality 

Perceived 
Value Satisfaction 

Loyalty 

Complaints 

Mobile Data – ECSI model 
Giorgio Russolillo�

All the items are from 1 to 10. "
 1 expresses a very negative point of view on the 
product while 10 a very positive opinion."

-> Standardized MVs"

-> All reflective blocks"

-> Centroid scheme has"
     been used"
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Model with standard linearity 
hypothesis 

Giorgio Russolillo�

Reg = 0,516 

R2 = 0,679 

R2 = 0,446 

R2 = 0,286 

Reg = 0,054 

Reg = 0,144 

Reg = 0,181 

Reg = 0,322 

Reg = 0,694 

Reg = 0,911 

Reg = 0,049 

R2 = 0,252 

R2 = 0,306 

R2 = 0,340 

Reg = 0,084 

Reg = 0,796 

GoF = 0.471
R2 = 0.387
ComM = 0.574

Image 

Expectation 

Perceived 
Quality 

Perceived 
Value Satisfaction 

Loyalty 

Complaints 

Reg = 0,556 

Reg = 0,558 



CNAM – Paris, 4/5/2011�

38/45 

NM-PLSPM (ordinal scaling) 
Giorgio Russolillo�

Image 

Expectation 

R2 = 0,418 

Perceived 
Quality 

R2 = 0,416 

Perceived 
Value 

R2 = 0,408 

Satisfaction 

R2 = 0,689 

Loyalty 

R2 = 0,525 

Complaints 

R2 = 0,319 

Reg = 0,645 

Reg = 0,688 

Reg = 0,099 

Reg = 0,687 

Reg = 0,565 

Reg = -0,015 

Reg = 0,169 

Reg = 0,247 

Reg = 0,382 

Reg = 0,376 

Reg = 0,674 

Reg = 0,051 

GoF = 0.526
R2 = 0.464
ComM = 0.597
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Image 

Expectation 

Perceived 
Quality 

Perceived 
Value Satisfaction 

Loyalty 

Complaints 

NM-PLSPM (nominal scaling) 
Giorgio Russolillo�

GoF = 0.546
R2 = 0.493
ComM = 0.605

R2 = 0,490 

R2 = 0,458 

R2 = 0,463 
R2 = 0,684 

R2 = 0,551 

R2 = 0,312 

Reg = 0,700 

Reg = 0,677 

Reg = 0,144 

Reg = 0,574 

Reg = 0,498 

Reg = -0,058 

Reg = 0,204 

Reg = 0,248 

Reg = 0,387 

Reg = 0,311 

Reg = 0,559 

Reg = 0,145 
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Ordinal and Nominal Quantification: 
the case of “Ratio Quality-Prize” variable 

Quantification with ordinal 
constraints"

Quantification without ordinal 
constraints "

Giorgio Russolillo�
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Flashback 

A suite of algorithms (NIPALS, PLS-R, PLS-PM, etc.) aiming to:"
•  easily handle in presence of missing data"
•  Perform multidimensional analyses of landscape matrices"
•  perform a regression analysis of data affected by multicollinearity problems "
•  estimate SEM parameters without making strong distributional assumptions 

(PLS-PM)"

A suite of algorithms (Princals, Ascal, Morals, Corals, Overals, etc. )  
for multivariate analysis on one, two or several blocks of variables 
measured at different scale levels."

Power methods involve a suite of iterative algorithms, well known from the first 
half of the 20th century, used for extracting the greatest eigenvalue (in absolute 
value) of a matrix."

Two classes of algorithms of this type have been greatly used in Statistics to 
solve different problems: PLS algorithms and ALSOS algorithms. "

(H. Wold) 

(J. de Leeuw)"

Giorgio Russolillo�
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Conclusion 
Giorgio Russolillo�

Quoting F. W. Young (Psychometrika, vol. 46, n. 4, 1981):"

“Certain strong correspondences exist between an ALSOS procedure and the 
NILES approach developed by Wold and Lyttkens."

The main difference between these metric algorithms and the nonmetric ALSOS 
algorithms is the optimal scaling features of the ALSOS algorithm."

The scaling feature permits the analysis of qualitative data, whereas the 
previous procedures can only analyze quantitative data.”"

This ultimate statement is no more true!"

It is possible to exploit the iterative nature of PLS algorithms to 
transform PLS methods in optimal scaling methods"
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