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MULTIVARIATE FRAMEWORK AND DIRECTIONS

(A) Classical direction u (B) Auxiliary direction u

Torres Díaz, Raúl A. Directional Extreme Value Analysis December 2015 2 / 57



MULTIVARIATE FRAMEWORK AND DIRECTIONS

Same view, different perspectives
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DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.
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DRAWBACKS IN THE MULTIVARIATE SETTING

The lack of a total order in high dimensions.

The dependence among the variables belonging to a system.

There are many interesting directions to analyze the data.

The costs of computing in high dimensions.
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OBJECTIVES

Introduce a directional multivariate setting for extreme value

analysis
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OBJECTIVES

Introduce a directional multivariate setting for extreme value

analysis

1 Considering the dependence among the variables.

2 Giving the possibility of analyzing the variables considering

external information, manager preferences or intrinsic system

characteristics.

3 Improving the interpretation of the analysis of extremes.

4 Providing a non-parametric procedure for estimation to com-

pute the analysis in high dimensions.
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Directional Basic Concepts

Cu
x ≡ Oriented Orthant.

DEFINITION

Given x, u ∈ R
n and ||u|| = 1, the orthant with vertex x and direction u

is:

C
u
x = {z ∈ R

n|Ru(z − x) ≥ 0},

where e = 1√
n
(1, ..., 1)′ and Ru is a matrix such that Ruu = e.
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Directional Basic Concepts

EXAMPLES OF ORIENTED ORTHANTS

(A) Orthant in direction u = (0, 1) (B) Orthant in direction u = −e

Examples of oriented orthants in R
2
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Directional Basic Concepts

QX(α, u) ≡ Directional Multivariate Quantile

DEFINITION

Given u ∈ R
n, ||u|| = 1 and a random vector X with distribution proba-

bility P, the α-quantile curve in direction u is defined as:

QX(α,u) := ∂{x ∈ R
n : P [Cu

x ] ≤ α},

where ∂ mans the boundary and 0 ≤ α ≤ 1
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Directional Basic Concepts

UX(α, u) ≡ Directional Multivariate Upper

Level-Set

LX(α, u) ≡ Directional Multivariate Lower

Level-Set

DEFINITION

Those sets are defined by:

UX(α,u) := {x ∈ R
n : P [Cu

x ] < α},

LX(α,u) := {x ∈ R
n : P [Cu

x] > α}.
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Directional Basic Concepts

DIRECTIONAL MULTIVARIATE LEVEL-SETS

u ∈ U =
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(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CLASSICAL DIRECTIONS
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Directional Basic Concepts

DIRECTIONAL MULTIVARIATE LEVEL-SETS

u ∈ U = {(1, 0) , (0, 1) , (−1, 0) , (0,−1)}

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CANONICAL DIRECTIONS
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Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Xm := {x1, · · · , xm}, the sample data of the random vector X,

PXm [·] is the empirical probability law of Xm,

Q̂h
Xm

(α,u) :=
{

xj : |PXm

[

C
u
xj

]

− α| ≤ h
}

the sample quantile curve

with a slack h, avoiding an empty set of estimated quantiles.

Ûh
Xm

(α,u) :=
{

xj : PXm

[

C
u
xj

]

< α− h
}

the sample upper α−level

set with a slack h,

L̂h
Xm

(α,u) :=
{

xj : PXm

[

C
u
xj

]

> α+ h
}

the sample lowe α−level set

with a slack h.
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Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Input: u, α, h and the multivariate sample Xm.

for i = 1 to m

Pi = PXm

[

C
u
xi

]

,

If |Pi − α| ≤ h

xi ∈ Q̂h
Xm

(α,u),

end

If Pi < α− h

xi ∈ Ûh
Xm

(α,u),

end

If Pi > α+ h

xi ∈ L̂h
Xm

(α,u),

end
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Non-Parametric Estimation

EXECUTION TIME

Time in Seconds
Dim\ Size 1000 5000 10000 50000

5 2 49 199 4903

10 2 53 208 5191

50 4 82 325 7656

100 6 139 561 12487

In an Intel core i7 (3,4 GH) computer with 32 Gb RAM.
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Applications Environmental

EXTREMES THROUGH COPULAS (REVIEW)

COPULA

Roughly speaking, a n-copula C is a particular type of distribution with

domain in the unit hyper-cube and uniform margins.

Sklar’s Theorem

Let F be a n-dimensional distribution function with marginals F1, · · · ,Fn.

Then there exists a n-copula C such that for all x ∈ R̄n,

F(x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn)).

If F1, ...,Fn are continuous, then C is unique.
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Applications Environmental

{v ∈ [0, 1]n : C(v) = α} ≡ Copula Quantile

Procedure

Let C be the n−copula of X and Fi, i = 1, ..., d its margins. Then for

0 < α < 1 the corresponding α−quantile hyper-curve, upper and lower

level sets are defined as:

{x ∈ R
n such that xi = F−1

Xi
(vi); i = 1, ..., n; v ∈ [0, 1]n : C(v) = α},

{x ∈ R
n such that xi = F−1

Xi
(vi); i = 1, ..., n; v ∈ [0, 1]n : C(v) < α},

{x ∈ R
n such that xi = F−1

Xi
(vi); i = 1, ..., n; v ∈ [0, 1]n : C(v) > α}.
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Applications Environmental

EXTREMES THROUGH COPULAS (REVIEW)

Handle Copula Families

& Marginal Distributions

(G.E.V, etc)

Sklar’s Theorem

Closed Multivariate Quantile Expressions
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Applications Environmental

DRAWBACKS WORKING WITH COPULAS

This approach is hard to manipulate because:

The parametric nature generates complications and/or restric-

tions in high dimension, even using nested copula techniques.

The models are quite rigid.
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Applications Environmental

DIRECTIONAL PROPOSAL OF EXTREMES

IDENTIFICATION

Directional Multivariate Level-Sets

Directional Extremes
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Applications Environmental

LOOKING THE DATA IN ANOTHER DIRECTION

Why is useful a directional approach in environ-
mental engineering?

To solve this question we simulate data from the model in Salvadori

et al. (2011), which refers to data of maximum annual flood peaks Q,

volumes V and water levels L in the Ceppo Morelli dam, Italy.
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Applications Environmental

CEPPO MORELLI DAM EXAMPLE
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Original dataset of the Ceppo Morelli dam
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Applications Environmental

CEPPO MORELLI DAM EXAMPLE

Copula model for the Ceppo Morelli dam
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Applications Environmental

CEPPO MORELLI DAM EXAMPLE

Simulated Sample from the model in Salvadori et al.
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Applications Environmental

CEPPO MORELLI DAM EXAMPLE

Extremes with the non-parametric approach,

in the classic direction e for α = 1%
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Applications Environmental

LOOKING THE DATA IN ANOTHER DIRECTION

Extremes with the non-parametric approach,

in the first PCA direction for α = 1%
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Applications Environmental

DETERMINISTIC PHYSICAL DAM-LEVEL BEHAVIOR

Final level from the simulated occurrences of Q,V,L

Torres Díaz, Raúl A. Directional Extreme Value Analysis December 2015 25 / 57



Applications Environmental

MEASURES OF FALSE-POSITIVES AND TRUE-POSITIVES

IN CLASSIC AND DIRECTIONAL APPROACHES

FALSE-POSITIVES

Classic Direction PCA Direction

90% 35%

TRUE-POSITIVES

Classic Direction PCA Direction

100% 100%
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Applications Environmental

DIRECTIONAL MULTIVARIATE QUANTILES & COPULA

APPROACH

THEOREM

Let u be fix, then the directional quantiles of a random vector X with

regularity conditions are equivalent to those obtained by the copula pro-

cedure on the random vector RuX, where Ru is the rotation matrix in the

orthant definition.
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Applications Environmental

DIRECTIONAL MULTIVARIATE QUANTILES & COPULA

APPROACH

SKETCH OF THE PROOF

Given α

QX(α,−e) ≡ F−1
X (α)&QX(α, e) ≡ F̄−1

X (α)

Under regularity conditions,

Orthogonal Quasi-Invariance & Sklar’s Theorem over R±uX

Directional approach ≡ Copula approach.
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Applications Financial

APPLICATION IN FINANCIAL RISK MEASURES

Let X be a random variable representing loss, F its distribution

function and 0 ≤ α ≤ 1. Then,

VaRα(X) := inf{x ∈ R | F(x) ≥ α}.
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Applications Financial

APPLICATION IN FINANCIAL RISK MEASURES

Let X be a random variable representing loss, F its distribution

function and 0 ≤ α ≤ 1. Then,

VaRα(X) := inf{x ∈ R | F(x) ≥ α}.

b

VaRα(X)

α
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Applications Financial

VALUE AT RISK (VaR)

The VaR has became in a benchmark for risk management.

The VaR has been criticized by Artzner et al. (1999) since it

does not encourage diversification.

But defended by Heyde et al. (2009) for its robustness and

recently by Daníelsson et al. (2013) for its tail subadditivity.
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Applications Financial

MULTIVARIATE DRAWBACKS OF VaR

There is not a unique definition of a multivariate quantile.

There are a lot of assets in a portfolio. (High Dimension)

There is dependence among them.
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Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

X = (X1, . . . ,Xn),

is to consider a function f : Rn −→ R and then:

The VaR of the joint portfolio is the univariate-one associated

to f (X).
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Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

X = (X1, . . . ,Xn),

is to consider a function f : Rn −→ R and then:

The VaR of the joint portfolio is the univariate-one associated

to f (X).

In Burgert and Rüschendorf (2006),

f (X) =
n

∑

i=1

Xi or f (X) = max
i≤n

Xi.

Output: A NUMBER

Torres Díaz, Raúl A. Directional Extreme Value Analysis December 2015 32 / 57



Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach

of the Value at Risk,
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Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach

of the Value at Risk,

Multivariate lower-orthant Value at Risk

VaR
α
(X) := ∂{x ∈ R

n | FX(x) ≥ α}.

Multivariate upper-orthant Value at Risk

VaRα(X) := ∂{x ∈ R
n | F̄X(x) ≤ 1 − α}.

Output: A SURFACE ON R
n
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Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk

measure related to the measure introduced by Embrechts and Puc-

cetti (2006).
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Applications Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk

measure related to the measure introduced by Embrechts and Puc-

cetti (2006).

Multivariate lower-orthant Value at Risk

VaR
α
(X) := E [X|FX(x) = α] .

Multivariate upper-orthant Value at Risk

VaRα(X) := E [X|F̄X(x) = 1 − α] .

Output: A POINT IN R
n
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Applications Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

DIRECTIONAL MVAR

Let X be a random vector satisfying "the regularity conditions", then the

Value at Risk of X in direction u and confidence parameter α is defined

as

VaRu
α
(X) =

(

QX(α,u)
⋂

{λu + E[X]}
)

,

where λ ∈ R and 0 ≤ α ≤ 1.

Output: A POINT IN R
n
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Applications Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)
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VaR−e
0.7(X)
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Applications Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)
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Applications Financial

MVAR PROPERTIES

Non-Negative Loading: If λ > 0,

E[X] �u VaRu
α
(X),

where the order is given by

PREORDER (LANIADO ET AL. (2010))

x is said to be less than y if:

x �u y ≡ C
u
x ⊇ C

u
y ≡ Rux ≤ Ruy.
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Applications Financial

MVAR PROPERTIES

Quasi-Odd Measure: VaRu
α
(−X) = −VaR−u

α
(X).

Positive Homogeneity and Translation Invariance: Given c ∈
R
+ and b ∈ R

n, then

VaRu
α
(cX + b) = cVaRu

α
(X) + b.
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Applications Financial

MVAR PROPERTIES

Orthogonal Quasi-Invariance: Let w and Q be an unit vector and

a particular orthogonal matrix obtained by a QR decomposition

such that Qu = w. Then,

VaRw
α
(QX) = QVaRu

α
(X).
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Applications Financial

MVAR PROPERTIES

Consistency: Let X and Y be random vectors such that E[Y] =
cu + E[X], for c > 0 and X ≤Eu Y. Then:

VaRu
α
(X) �u VaRu

α
(Y),

where the stochastic order is defined by

STOCHASTIC EXTREMALITY ORDER (LANIADO ET AL. (2012))

Let X and Y be two random vectors in R
n,

X ≤Eu Y ≡ P [Ru(X − z) ≥ 0] ≤ P [Ru(Y − z) ≥ 0] ≡ PX [Cu
z ] ≤ PY [Cu

z ] ,

for all z in R
n.
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Applications Financial

MVAR PROPERTIES

Non-Excessive Loading: For all α ∈ (0, 1) and u ∈ B(0),

VaRu
α
(X) �u R′

u sup
ω∈Ω

{RuX(ω)}.

Subadditivity in the Tail Region: Let X and Y be random vectors,

with the same mean µ and let (RuX,RuY) be a regularly varying

random vector. Then,

VaRu
α
(X + Y) �u VaRu

α
(X) + VaRu

α
(Y).
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Applications Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

RESULT

Let X be a random vector and u a direction. Then for all 0 ≤ α ≤ 1,

VaRu
α
(X) �u VaR−u

1−α
(X).
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Applications Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Then, analogously as Embrechts and Puccetti (2006) and Cousin

and Di Bernardino (2013), we can define:

Lower Multivariate VaR in the direction u as

VaRu
α
(X),

Upper Multivariate VaR in the direction u as

VaR−u
1−α

(X).
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Applications Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

47 48 49 50 51 52 53
47

48

49

50

51

52

53

Lower Multivariate VaR = VaRe
0.3(X) and

Upper Multivariate VaR = VaR−e
0.7(X)
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Applications Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

47 48 49 50 51 52 53
47

48

49

50

51

52

53

Lower Multivariate VaR = VaR
( 1√

5
,

2√
5
)

0.3 (X) and

Upper Multivariate VaR = VaR
−( 1√

5
,

2√
5
)

0.7 (X)
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Applications Financial

RELATION BETWEEN THE MARGINAL VaR AND THE

MVaR

RESULT

Let X be a random vector with survival function F̄ quasi-concave. Then,

for all α ∈ (0, 1):

VaR1−α(Xi) ≥ [VaRe
α
(X)]i , for all i = 1, ..., n.

Moreover, if its distribution function F is quasi-concave, then, for all α ∈
(0, 1),

[

VaR−e
1−α

(X)
]

i
≥ VaR1−α(Xi), for all i = 1, ..., n.
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Applications Financial

RELATION BETWEEN THE MARGINAL VaR AND THE

MVaR

RESULT

Let X be a random vector and u a direction. If the survival function of

RuX is quasi-concave. Then, for all 0 ≤ α ≤ 1,

VaR1−α([RuX]i) ≥ [RuVaRu
α
(X)]i , for all i = 1, ..., n.

And if RuX has a quasi-concavity cumulative distribution, we have that

[

RuVaR−u
1−α

(X)
]

i
≥ VaR1−α([RuX]i), for all i = 1, ..., n.
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Applications Financial

ROBUSTNESS

We analyze the behavior of the MVaR when a sample is contami-

nated with different types of outliers.

We use as a benchmark the measurement given by the multivariate

VaR in Cousin and Di Bernardino (2013).
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Applications Financial

ROBUSTNESS

We simulate 5000 observations of the following random vector:

Xω d
=

{

X1 with probability p = 1 − ω,

X2 with probability p = ω,

where X1
d
= N1(µ1,Σ1), X2

d
= N2(µ1 + ∆µ,Σ1 + ∆Σ) and 0 ≤ ω ≤ 1.

Specifically:

µ1 = [50, 50]′, Σ1 =

(

0.5 0.3

0.3 0.5

)

.

Contaminating











1. Varying only the mean.

2. Varying only the variances.

3. Varying all the parameters.
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Applications Financial

ROBUSTNESS

To evaluate the impact of the contamination, we use:

PVω =
||Measure(Xω)− Measure(X0)||2

||Measure(X0)||2
,

where Measure(X0) is the sample with ω = 0% and Measure(Xω) is

the sample with level of contamination ω%, (ω = 1% → 10%).
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Applications Financial

ROBUSTNESS

1. Varying only the mean, ∆µ 6= 0, ∆Σ = 0.
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Applications Financial

ROBUSTNESS

2. Varying only the variances, ∆µ = 0, ∆Σ =

[

4.5 0

0 6.5

]

,
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ROBUSTNESS
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CURRENT RESEARCH ABOUT ESTIMATION

RESULT

Let X be a multivariate regularly varying random vector with tail in-

dex β. Then for all orthogonal transformation Q the random vector

QX is regularly varying with tail index β.
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CURRENT RESEARCH ABOUT ESTIMATION

Using as base the theory in De Haan and Huang (1995) for a bivari-

ate estimation of quantile curves, we want to:

Study the extension to higher dimensions.
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CURRENT RESEARCH ABOUT ESTIMATION

Using as base the theory in De Haan and Huang (1995) for a bivari-

ate estimation of quantile curves, we want to:

Study the extension to higher dimensions.

Link the directional notion into the theory by using previous

result.

Study convergence and consistency, theoretically and practi-

cally.

Make comparisons between the previous non-parametric ap-

proach and the resultant by this research.
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MULTIVARIATE HEAVY TAILED EXAMPLE
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ESTIMATION IN THE FIRST PCA DIRECTION
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CONCLUSIONS AND FUTURE RESEARCH

We have introduced an extension of the multivariate extreme

value analysis by introducing a directional notion.
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We have introduced an extension of the multivariate extreme

value analysis by introducing a directional notion.

The directional approach allows to consider external intrinsic

information of a system or management preferences in the

analysis.

We provide arguments of the needing of these directional ap-

proach in practice. As well as, we present theoretical proper-

ties and results of this directional extension in the developed

applications.

Two important aspects have been studied. Asymptotic con-

vergence and robustness in more general cases.
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