MULTIVARIATE EXTREME VALUE ANALYSIS UNDER A DIRECTIONAL APPROACH

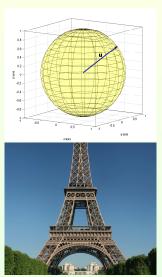
Raúl A. TORRES

CNAM Paris

Department of Statistics Universidad Carlos III de Madrid

December 2015

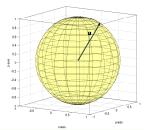
MULTIVARIATE FRAMEWORK AND DIRECTIONS



(A) Classical direction u

Torres Díaz, Raúl A.

Directional Extreme Value Analysis

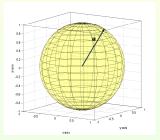


(B) Auxiliary direction u

alue Analysis Decer

December 2015 2 / 57

MULTIVARIATE FRAMEWORK AND DIRECTIONS



Same view, different perspectives

• The lack of a total order in high dimensions.

Torres Díaz, Raúl A.

- The lack of a total order in high dimensions.
- The dependence among the variables belonging to a system.

- The lack of a total order in high dimensions.
- The dependence among the variables belonging to a system.
- There are many interesting directions to analyze the data.

- The lack of a total order in high dimensions.
- The dependence among the variables belonging to a system.
- There are many interesting directions to analyze the data.
- The costs of computing in high dimensions.

Introduce a directional multivariate setting for extreme value analysis

Introduce a directional multivariate setting for extreme value analysis

- Considering the dependence among the variables.
- Giving the possibility of analyzing the variables considering external information, manager preferences or intrinsic system characteristics.
- **Improving the interpretation of the analysis of extremes.**

Introduce a directional multivariate setting for extreme value analysis

- Considering the dependence among the variables.
- Giving the possibility of analyzing the variables considering external information, manager preferences or intrinsic system characteristics.
- **Improving the interpretation of the analysis of extremes.**
- Providing a non-parametric procedure for estimation to compute the analysis in high dimensions.

1 DIRECTIONAL BASIC CONCEPTS

2 NON-PARAMETRIC ESTIMATION

3 APPLICATIONS IN EXTREME VALUE ANALYSIS

- Environmental Applications
- Application in Financial Risk Measures
- Current Research about Estimation

4 CONCLUSIONS AND FUTURE RESEARCH

$\mathfrak{C}^{\mathbf{u}}_{\mathbf{x}} \equiv \mathbf{Oriented Orthant.}$

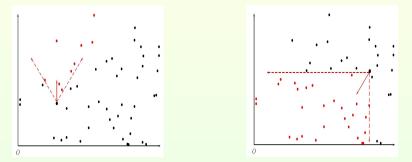
DEFINITION

Given \mathbf{x} , $\mathbf{u} \in \mathbb{R}^n$ and $||\mathbf{u}|| = 1$, the orthant with vertex \mathbf{x} and direction \mathbf{u} is:

$$\mathfrak{C}_{\mathbf{x}}^{\mathbf{u}} = \{ \mathbf{z} \in \mathbb{R}^n | R_{\mathbf{u}}(\mathbf{z} - \mathbf{x}) \ge 0 \},\$$

where $\mathbf{e} = \frac{1}{\sqrt{n}}(1, ..., 1)'$ and $R_{\mathbf{u}}$ is a matrix such that $R_{\mathbf{u}}\mathbf{u} = \mathbf{e}$.

EXAMPLES OF ORIENTED ORTHANTS



(A) Orthant in direction $\mathbf{u} = (0, 1)$ (B) Orthant in direction $\mathbf{u} = -\mathbf{e}$

Examples of oriented orthants in \mathbb{R}^2

$Q_{\mathbf{X}}(\alpha, \mathbf{u}) \equiv \mathbf{D}$ irectional Multivariate Quantile

DEFINITION

Given $\mathbf{u} \in \mathbb{R}^n$, $||\mathbf{u}|| = 1$ and a random vector \mathbf{X} with distribution probability \mathbb{P} , the α -quantile curve in direction \mathbf{u} is defined as:

$$\mathcal{Q}_{\mathbf{X}}(\alpha, \mathbf{u}) := \partial \{ \mathbf{x} \in \mathbb{R}^n : \mathbb{P}\left[\mathfrak{C}^{\mathbf{u}}_{\mathbf{x}}\right] \le \alpha \},\$$

where ∂ mans the boundary and $0 \leq \alpha \leq 1$

$\begin{array}{lll} \mathcal{U}_{\mathbf{X}}(\alpha,\mathbf{u}) & \equiv & \mbox{Directional Multivariate Upper} \\ & \mbox{Level-Set} \\ \mathcal{L}_{\mathbf{X}}(\alpha,\mathbf{u}) & \equiv & \mbox{Directional Multivariate Lower} \\ & \mbox{Level-Set} \end{array}$

DEFINITION

Those sets are defined by:

$$\mathcal{U}_{\mathbf{X}}(\alpha, \mathbf{u}) := \{ \mathbf{x} \in \mathbb{R}^n : \mathbb{P} [\mathfrak{C}_{\mathbf{x}}^{\mathbf{u}}] < \alpha \},$$
$$\mathcal{L}_{\mathbf{X}}(\alpha, \mathbf{u}) := \{ \mathbf{x} \in \mathbb{R}^n : \mathbb{P} [\mathfrak{C}_{\mathbf{x}}^{\mathbf{u}}] > \alpha \}.$$

DIRECTIONAL MULTIVARIATE LEVEL-SETS

$$\mathbf{u} \in \mathfrak{U} = \left\{ \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\}$$

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CLASSICAL DIRECTIONS

Torres Díaz, Raúl A.

Directional Extreme Value Analysis

Directional Basic Concepts

DIRECTIONAL MULTIVARIATE LEVEL-SETS

$\boldsymbol{u}\in\mathfrak{U}=\left\{ \left(1,0\right),\left(0,1\right),\left(-1,0\right),\left(0,-1\right)\right\}$

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CANONICAL DIRECTIONS

NON-PARAMETRIC ESTIMATION

- $\bullet~X_{\it m}:=\{x_1,\cdots,x_m\},$ the sample data of the random vector X,
- $\mathbb{P}_{\mathbf{X}_m}[\cdot]$ is the empirical probability law of \mathbf{X}_m ,
- $\hat{\mathcal{Q}}_{\mathbf{X}_m}^h(\alpha, \mathbf{u}) := \left\{ \mathbf{x}_{\mathbf{j}} : |\mathbb{P}_{\mathbf{X}_m} \left[\mathfrak{C}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{u}} \right] \alpha| \le h \right\}$ the sample quantile curve with a slack *h*, avoiding an empty set of estimated quantiles.
- $\hat{\mathcal{U}}^h_{\mathbf{X}_m}(\alpha, \mathbf{u}) := \left\{ \mathbf{x}_{\mathbf{j}} : \mathbb{P}_{\mathbf{X}_m} \left[\mathfrak{C}^{\mathbf{u}}_{\mathbf{x}_{\mathbf{j}}} \right] < \alpha h \right\}$ the sample upper α -level set with a slack h,
- $\hat{\mathcal{L}}_{\mathbf{X}_m}^h(\alpha, \mathbf{u}) := \left\{ \mathbf{x}_{\mathbf{j}} : \mathbb{P}_{\mathbf{X}_m} \left[\mathfrak{C}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{u}} \right] > \alpha + h \right\}$ the sample lowe α -level set with a slack h.

NON-PARAMETRIC ESTIMATION

Input: **u**, α , h and the multivariate sample **X**_m. for i = 1 to m $P_i = \mathbb{P}_{\mathbf{X}_m} \left[\mathfrak{C}^{\mathbf{u}}_{\mathbf{x}_i} \right],$ If $|P_i - \alpha| < h$ $\mathbf{x}_i \in \hat{\mathcal{Q}}^h_{\mathbf{X}_m}(\alpha, \mathbf{u}),$ end If $P_i < \alpha - h$ $\mathbf{x}_i \in \hat{\mathcal{U}}^h_{\mathbf{X}_m}(\alpha, \mathbf{u}),$ end If $P_i > \alpha + h$ $\mathbf{x}_i \in \hat{\mathcal{L}}_{\mathbf{X}}^h \ (\alpha, \mathbf{u}),$ end

Non-Parametric Estimation

EXECUTION TIME

Time in Seconds

Dim\ Size	1000	5000	10000	50000
5	2	49	199	4903
10	2	53	208	5191
50	4	82	325	7656
100	6	139	561	12487

In an Intel core i7 (3,4 GH) computer with 32 Gb RAM.

EXTREMES THROUGH COPULAS (REVIEW)

COPULA

Roughly speaking, a n-copula C is a particular type of distribution with domain in the unit hyper-cube and uniform margins.

Sklar's Theorem

Let *F* be a *n*-dimensional distribution function with marginals F_1, \dots, F_n . Then there exists a *n*-copula *C* such that for all $\mathbf{x} \in \mathbb{R}^n$,

$$F(x_1,\cdots,x_n)=C(F_1(x_1),\cdots,F_n(x_n)).$$

If $F_1, ..., F_n$ are continuous, then *C* is unique.

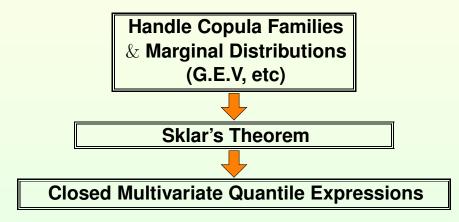
$\{\mathbf{v} \in [0,1]^n : C(\mathbf{v}) = \alpha\} \equiv$ Copula Quantile Procedure

Let *C* be the *n*-copula of **X** and F_i , i = 1, ..., d its margins. Then for $0 < \alpha < 1$ the corresponding α -quantile hyper-curve, upper and lower level sets are defined as:

$$\{ \mathbf{x} \in \mathbb{R}^n \text{ such that } x_i = F_{X_i}^{-1}(v_i); \ i = 1, ..., n; \ \mathbf{v} \in [0, 1]^n : C(\mathbf{v}) = \alpha \}, \\ \{ \mathbf{x} \in \mathbb{R}^n \text{ such that } x_i = F_{X_i}^{-1}(v_i); \ i = 1, ..., n; \ \mathbf{v} \in [0, 1]^n : C(\mathbf{v}) < \alpha \}, \\ \{ \mathbf{x} \in \mathbb{R}^n \text{ such that } x_i = F_{X_i}^{-1}(v_i); \ i = 1, ..., n; \ \mathbf{v} \in [0, 1]^n : C(\mathbf{v}) > \alpha \}.$$

Environmental

EXTREMES THROUGH COPULAS (REVIEW)



Torres Díaz, Raúl A.

Directional Extreme Value Analysis

DRAWBACKS WORKING WITH COPULAS

This approach is hard to manipulate because:

- The parametric nature generates complications and/or restrictions in high dimension, even using nested copula techniques.
- The models are quite rigid.

Environmental

DIRECTIONAL PROPOSAL OF EXTREMES IDENTIFICATION

Directional Multivariate Level-Sets

Directional Extremes

Torres Díaz. Raúl A.

Directional Extreme Value Analysis

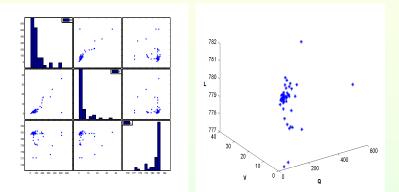
LOOKING THE DATA IN ANOTHER DIRECTION

Why is useful a directional approach in environmental engineering?

To solve this question we simulate data from the model in Salvadori et al. (2011), which refers to data of maximum annual flood peaks Q, volumes V and water levels L in the Ceppo Morelli dam, Italy.

Environmental

CEPPO MORELLI DAM EXAMPLE

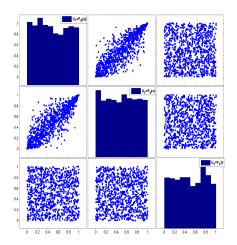


Original dataset of the Ceppo Morelli dam

Torres Díaz, Raúl A.

Environmental

CEPPO MORELLI DAM EXAMPLE



21 / 57

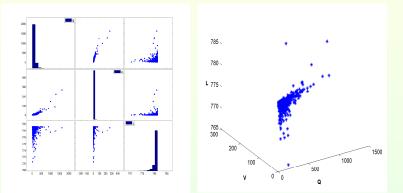
Copula model for the Ceppo Morelli dam

Torres Díaz, Raúl A.

Directional Extreme Value Analysis

Environmental

CEPPO MORELLI DAM EXAMPLE

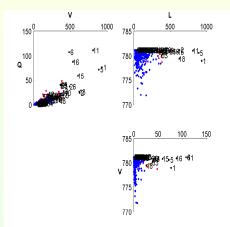


Simulated Sample from the model in Salvadori et al.

Torres Díaz, Raúl A.

Environmental

CEPPO MORELLI DAM EXAMPLE



Extremes with the non-parametric approach,

in the classic direction ${\bf e}$ for $\alpha=1\%$

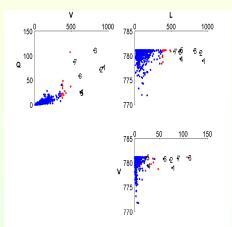
Torres Díaz, Raúl A.

Directional Extreme Value Analysis

23 / 57

Environmental

LOOKING THE DATA IN ANOTHER DIRECTION



Extremes with the non-parametric approach,

in the first *PCA* direction for $\alpha = 1\%$

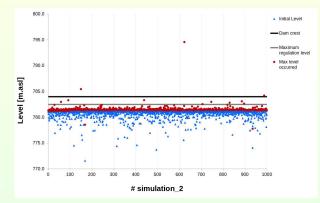
Torres Díaz, Raúl A.

Directional Extreme Value Analysis

24 / 57

Environmental

DETERMINISTIC PHYSICAL DAM-LEVEL BEHAVIOR



Final level from the simulated occurrences of Q, V, L

Environmental

MEASURES OF FALSE-POSITIVES AND TRUE-POSITIVES IN CLASSIC AND DIRECTIONAL APPROACHES

Classic Direction PCA Direction 90% 35%

TRUE-POSITIVES

Classic Direction	PCA Direction	
100%	100%	

Environmental

DIRECTIONAL MULTIVARIATE QUANTILES & COPULA APPROACH

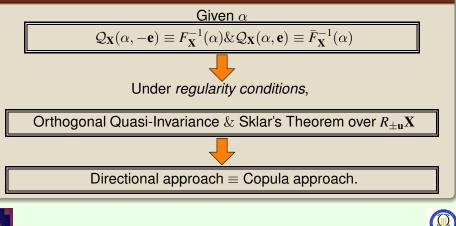
Theorem

Let **u** be fix, then the directional quantiles of a random vector **X** with *regularity conditions* are equivalent to those obtained by the copula procedure on the random vector $R_{\mathbf{u}}\mathbf{X}$, where $R_{\mathbf{u}}$ is the rotation matrix in the orthant definition.

Environmental

DIRECTIONAL MULTIVARIATE QUANTILES & COPULA APPROACH

SKETCH OF THE PROOF



Financial

APPLICATION IN FINANCIAL RISK MEASURES

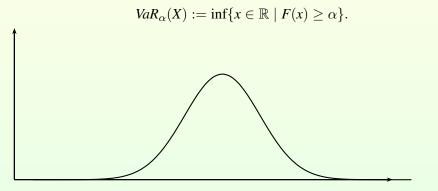
Let *X* be a random variable representing loss, *F* its distribution function and $0 \le \alpha \le 1$. Then,

 $VaR_{\alpha}(X) := \inf\{x \in \mathbb{R} \mid F(x) \ge \alpha\}.$

Financial

APPLICATION IN FINANCIAL RISK MEASURES

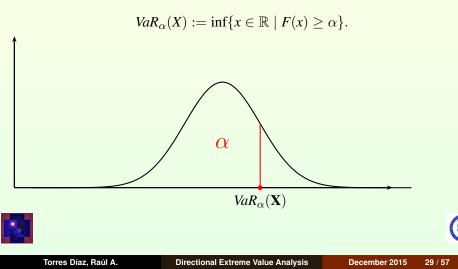
Let *X* be a random variable representing loss, *F* its distribution function and $0 \le \alpha \le 1$. Then,



Financial

APPLICATION IN FINANCIAL RISK MEASURES

Let *X* be a random variable representing loss, *F* its distribution function and $0 \le \alpha \le 1$. Then,



VALUE AT RISK (VaR)

- The VaR has became in a benchmark for risk management.
- The *VaR* has been criticized by Artzner et al. (1999) since it does not encourage diversification.
- But defended by Heyde et al. (2009) for its robustness and recently by Daníelsson et al. (2013) for its tail subadditivity.

MULTIVARIATE DRAWBACKS OF VaR

- There is not a unique definition of a multivariate quantile.
- There are a lot of assets in a portfolio. (High Dimension)
- There is dependence among them.

Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

 $\mathbf{X}=(X_1,\ldots,X_n),$

is to consider a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and then:

• The VaR of the joint portfolio is the univariate-one associated to $f(\mathbf{X})$.

Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios

 $\mathbf{X}=(X_1,\ldots,X_n),$

is to consider a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and then:

- The VaR of the joint portfolio is the univariate-one associated to $f(\mathbf{X})$.
- In Burgert and Rüschendorf (2006),

$$f(\mathbf{X}) = \sum_{i=1}^{n} X_i \text{ or } f(\mathbf{X}) = \max_{i \le n} X_i.$$

Output: A NUMBER

Financial

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach of the Value at Risk,

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach of the Value at Risk,

Multivariate lower-orthant Value at Risk

 $\underline{VaR}_{\alpha}(\mathbf{X}) := \partial \{ \mathbf{x} \in \mathbb{R}^n \mid F_{\mathbf{X}}(\mathbf{x}) \geq \alpha \}.$

Multivariate upper-orthant Value at Risk

$$\overline{VaR}_{\alpha}(\mathbf{X}) := \partial \{ \mathbf{x} \in \mathbb{R}^n \mid \overline{F}_{\mathbf{X}}(\mathbf{x}) \leq 1 - \alpha \}.$$

Output: A SURFACE ON \mathbb{R}^n

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk measure related to the measure introduced by Embrechts and Puccetti (2006).

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk measure related to the measure introduced by Embrechts and Puccetti (2006).

Multivariate lower-orthant Value at Risk

$$\underline{VaR}_{\alpha}(\mathbf{X}) := \mathbb{E}\left[\mathbf{X}|F_{\mathbf{X}}(\mathbf{x}) = \alpha\right].$$

Multivariate upper-orthant Value at Risk

$$\overline{VaR}_{\alpha}(\mathbf{X}) := \mathbb{E}\left[\mathbf{X}|\bar{F}_{\mathbf{X}}(\mathbf{x}) = 1 - \alpha\right].$$

Output: A POINT IN \mathbb{R}^n

Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

DIRECTIONAL MVAR

Let X be a random vector satisfying "the regularity conditions", then the Value at Risk of X in direction u and confidence parameter α is defined as

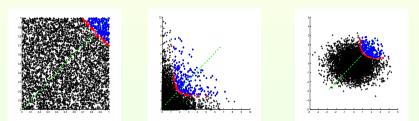
$$VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) = \left(\mathcal{Q}_{\mathbf{X}}(\alpha, \mathbf{u}) \bigcap \{\lambda \mathbf{u} + \mathbb{E}[\mathbf{X}]\}\right),$$

where $\lambda \in \mathbb{R}$ and $0 \leq \alpha \leq 1$.

Output: A POINT IN \mathbb{R}^n

Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

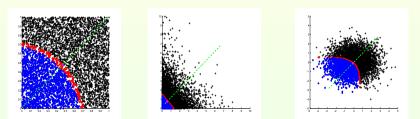


(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

 $VaR_{0.7}^{-e}(\mathbf{X})$

Financial

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)



(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

 $VaR_{0.3}^{e}(\mathbf{X})$

licati	

• Non-Negative Loading: If $\lambda > 0$,

 $\mathbb{E}[\mathbf{X}] \preceq_{\mathbf{u}} \mathit{VaR}^{\mathbf{u}}_{\alpha}(\mathbf{X}),$

where the order is given by

PREORDER (LANIADO ET AL. (2010))

 \boldsymbol{x} is said to be less than \boldsymbol{y} if:

$$\mathbf{x} \preceq_{\mathbf{u}} \mathbf{y} \equiv \mathfrak{C}^{\mathbf{u}}_{\mathbf{x}} \supseteq \mathfrak{C}^{\mathbf{u}}_{\mathbf{v}} \equiv R_{\mathbf{u}}\mathbf{x} \leq R_{\mathbf{u}}\mathbf{y}.$$

- Quasi-Odd Measure: $VaR^{\mathbf{u}}_{\alpha}(-\mathbf{X}) = -VaR^{-\mathbf{u}}_{\alpha}(\mathbf{X}).$
- Positive Homogeneity and Translation Invariance: Given $c \in \mathbb{R}^+$ and $\mathbf{b} \in \mathbb{R}^n$, then

$$VaR^{\mathbf{u}}_{\alpha}(c\mathbf{X} + \mathbf{b}) = cVaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) + \mathbf{b}.$$

• Orthogonal Quasi-Invariance: Let w and Q be an unit vector and a particular orthogonal matrix obtained by a QR decomposition such that $Q\mathbf{u} = \mathbf{w}$. Then,

$$VaR^{\mathbf{w}}_{\alpha}(Q\mathbf{X}) = QVaR^{\mathbf{u}}_{\alpha}(\mathbf{X}).$$

Applications	Financial
MVAR PROPERTIES	

• Consistency: Let X and Y be random vectors such that $\mathbb{E}[Y] = c\mathbf{u} + \mathbb{E}[X]$, for c > 0 and $X \leq_{\mathcal{E}_u} Y$. Then:

 $VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) \preceq_{\mathbf{u}} VaR^{\mathbf{u}}_{\alpha}(\mathbf{Y}),$

where the stochastic order is defined by

STOCHASTIC EXTREMALITY ORDER (LANIADO ET AL. (2012))

Let **X** and **Y** be two random vectors in \mathbb{R}^n ,

 $\mathbf{X} \leq_{\mathcal{E}_{\mathbf{u}}} \mathbf{Y} \quad \equiv \quad \mathbb{P}\left[R_{\mathbf{u}}(\mathbf{X} - \mathbf{z}) \geq 0\right] \leq \mathbb{P}\left[R_{\mathbf{u}}(\mathbf{Y} - \mathbf{z}) \geq 0\right] \quad \equiv \quad \mathbb{P}_{\mathbf{X}}\left[\mathfrak{C}_{\mathbf{z}}^{\mathbf{u}}\right] \leq \mathbb{P}_{\mathbf{Y}}\left[\mathfrak{C}_{\mathbf{z}}^{\mathbf{u}}\right],$

for all \mathbf{z} in \mathbb{R}^n .

• Non-Excessive Loading: For all $\alpha \in (0,1)$ and $\mathbf{u} \in \mathbb{B}(0)$,

$$VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) \preceq_{\mathbf{u}} R'_{\mathbf{u}} \sup_{\omega \in \Omega} \{R_{\mathbf{u}}\mathbf{X}(\omega)\}.$$

• Subadditivity in the Tail Region: Let X and Y be random vectors, with the same mean μ and let (R_uX, R_uY) be a regularly varying random vector. Then,

$$VaR^{\mathbf{u}}_{\alpha}(\mathbf{X} + \mathbf{Y}) \preceq_{\mathbf{u}} VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) + VaR^{\mathbf{u}}_{\alpha}(\mathbf{Y}).$$

Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

RESULT

Let **X** be a random vector and **u** a direction. Then for all $0 \le \alpha \le 1$,

 $VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}) \preceq_{\mathbf{u}} VaR^{-\mathbf{u}}_{1-\alpha}(\mathbf{X}).$

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Then, analogously as Embrechts and Puccetti (2006) and Cousin and Di Bernardino (2013), we can define:

Lower Multivariate VaR in the direction u as

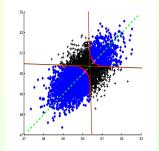
 $VaR^{\mathbf{u}}_{\alpha}(\mathbf{X}),$

Upper Multivariate VaR in the direction u as

 $VaR_{1-\alpha}^{-\mathbf{u}}(\mathbf{X}).$

Financial

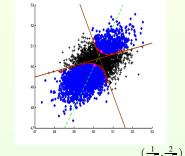
LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR



Lower Multivariate $VaR = VaR_{0,3}^{e}(\mathbf{X})$ and Upper Multivariate $VaR = VaR_{0,7}^{-e}(\mathbf{X})$

Financial

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR



Lower Multivariate VaR = $VaR_{0.3}^{(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}})}(\mathbf{X})$ and Upper Multivariate VaR = $VaR_{0.7}^{-(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}})}(\mathbf{X})$

Financial

RELATION BETWEEN THE MARGINAL VaR AND THE MVaR

RESULT

Let X be a random vector with survival function \overline{F} quasi-concave. Then, for all $\alpha \in (0, 1)$:

 $VaR_{1-\alpha}(X_i) \ge [VaR^{\mathbf{e}}_{\alpha}(\mathbf{X})]_i, \quad \text{for all} \quad i = 1, ..., n.$

Moreover, if its distribution function F is quasi-concave, then, for all $\alpha \in (0, 1)$,

$$\left[VaR_{1-\alpha}^{-\mathbf{e}}(\mathbf{X}) \right]_i \ge VaR_{1-\alpha}(X_i), \quad \text{for all} \quad i = 1, ..., n.$$

Financial

RELATION BETWEEN THE MARGINAL VaR AND THE MVaR

RESULT

Let **X** be a random vector and **u** a direction. If the survival function of $R_{\mathbf{u}}\mathbf{X}$ is quasi-concave. Then, for all $0 \le \alpha \le 1$,

 $VaR_{1-\alpha}([R_{\mathbf{u}}\mathbf{X}]_i) \ge [R_{\mathbf{u}}VaR_{\alpha}^{\mathbf{u}}(\mathbf{X})]_i, \quad \text{for all} \quad i = 1, ..., n.$

And if $R_u X$ has a quasi-concavity cumulative distribution, we have that

 $\left[R_{\mathbf{u}} \operatorname{VaR}_{1-\alpha}^{-\mathbf{u}}(\mathbf{X})\right]_{i} \ge \operatorname{VaR}_{1-\alpha}([R_{\mathbf{u}}X]_{i}), \quad \text{for all} \quad i = 1, ..., n.$

ROBUSTNESS

We analyze the behavior of the *MVaR* when a sample is contaminated with different types of outliers.

We use as a benchmark the measurement given by the multivariate *VaR* in Cousin and Di Bernardino (2013).

Applications		Financial		
ROBUSTNESS				

We simulate 5000 observations of the following random vector:

$$\mathbf{X}^{\omega} \stackrel{\mathrm{d}}{=} \begin{cases} \mathbf{X}_1 & \text{ with probability } p = 1 - \omega, \\ \mathbf{X}_2 & \text{ with probability } p = \omega, \end{cases}$$

where $\mathbf{X}_1 \stackrel{\mathbf{d}}{=} N_1(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$, $\mathbf{X}_2 \stackrel{\mathbf{d}}{=} N_2(\boldsymbol{\mu}_1 + \Delta_{\boldsymbol{\mu}}, \boldsymbol{\Sigma}_1 + \Delta_{\boldsymbol{\Sigma}})$ and $0 \leq \omega \leq 1$. Specifically:

$$\boldsymbol{\mu}_1 = [50, 50]', \qquad \Sigma_1 = \begin{pmatrix} 0.5 & 0.3 \\ 0.3 & 0.5 \end{pmatrix}.$$

Contaminating 3. Varying only the mean. 3. Varying only the variances. 3. Varying all the parameters.

ROBUSTNESS

To evaluate the impact of the contamination, we use:

$$PV^{\omega} = \frac{||Measure(\mathbf{X}^{\omega}) - Measure(\mathbf{X}^{0})||_{2}}{||Measure(\mathbf{X}^{0})||_{2}},$$

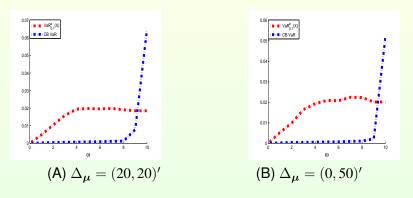
where $Measure(\mathbf{X}^0)$ is the sample with $\omega = 0\%$ and $Measure(\mathbf{X}^\omega)$ is the sample with level of contamination $\omega\%$, ($\omega = 1\% \rightarrow 10\%$).

Ap	pl	icat	ions

Financial

ROBUSTNESS

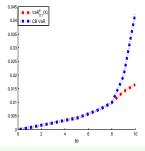
1. Varying only the mean, $\Delta_{\mu} \neq 0$, $\Delta_{\Sigma} = 0$.



Mean of PV^{ω}

ROBUSTNESS

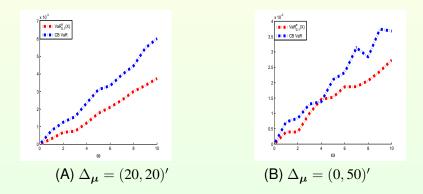
2. Varying only the variances, $\Delta_{\mu} = 0$, $\Delta_{\Sigma} = \begin{bmatrix} 4.5 & 0 \\ 0 & 6.5 \end{bmatrix}$,



Mean of PV^{ω}

ROBUSTNESS

3. Varying all the parameters, $\Delta_{\mu} \neq 0$, $\Delta_{\Sigma} = \begin{bmatrix} 4.5 & 0.2 \\ 0.3 & 6.5 \end{bmatrix}$,



Estimation Research

CURRENT RESEARCH ABOUT ESTIMATION

Result

Let X be a multivariate regularly varying random vector with tail index β . Then for all orthogonal transformation Q the random vector QX is regularly varying with tail index β .

Torres Díaz, Raúl A.

Using as base the theory in De Haan and Huang (1995) for a bivariate estimation of quantile curves, we want to:

Study the extension to higher dimensions.

Using as base the theory in De Haan and Huang (1995) for a bivariate estimation of quantile curves, we want to:

- Study the extension to higher dimensions.
- Link the directional notion into the theory by using previous result.

Using as base the theory in De Haan and Huang (1995) for a bivariate estimation of quantile curves, we want to:

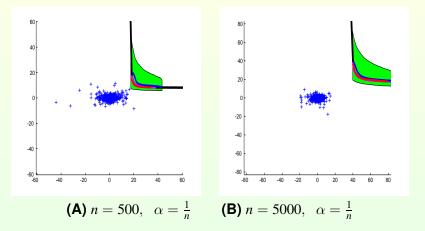
- Study the extension to higher dimensions.
- Link the directional notion into the theory by using previous result.
- Study convergence and consistency, theoretically and practically.

Using as base the theory in De Haan and Huang (1995) for a bivariate estimation of quantile curves, we want to:

- Study the extension to higher dimensions.
- Link the directional notion into the theory by using previous result.
- Study convergence and consistency, theoretically and practically.
- Make comparisons between the previous non-parametric approach and the resultant by this research.

Estimation Research

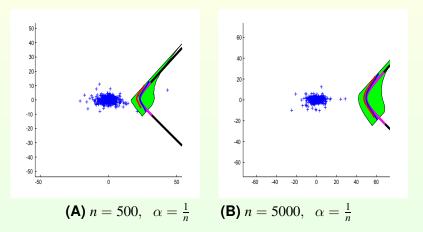
MULTIVARIATE HEAVY TAILED EXAMPLE



Bivariate *t*-distribution with $\nu = 3$

Estimation Research

ESTIMATION IN THE FIRST PCA DIRECTION



Bivariate *t*-distribution with $\nu = 3$

CONCLUSIONS AND FUTURE RESEARCH

• We have introduced an extension of the multivariate extreme value analysis by introducing a directional notion.

Torres Díaz, Raúl A.

Conclusions

CONCLUSIONS AND FUTURE RESEARCH

- We have introduced an extension of the multivariate extreme value analysis by introducing a directional notion.
- The directional approach allows to consider external intrinsic information of a system or management preferences in the analysis.

Conclusions

CONCLUSIONS AND FUTURE RESEARCH

- We have introduced an extension of the multivariate extreme value analysis by introducing a directional notion.
- The directional approach allows to consider external intrinsic information of a system or management preferences in the analysis.
- We provide arguments of the needing of these directional approach in practice. As well as, we present theoretical properties and results of this directional extension in the developed applications.

Conclusions

CONCLUSIONS AND FUTURE RESEARCH

- We have introduced an extension of the multivariate extreme value analysis by introducing a directional notion.
- The directional approach allows to consider external intrinsic information of a system or management preferences in the analysis.
- We provide arguments of the needing of these directional approach in practice. As well as, we present theoretical properties and results of this directional extension in the developed applications.
- Two important aspects have been studied. Asymptotic convergence and robustness in more general cases.

Thanks

Torres Díaz, Raúl A.

Directional Extreme Value Analysis

Torres R., Lillo R.E., and Laniado H., A directional multivariate Value at Risk.

Insurance Math. Econom., 2015 Accepted. http://dx.doi.org/10.1016/j.insmatheco.2015.09.002

Nelsen R.B., An Introduction to copulas, (2nd edn) Springer-Verlag: New York, 2006.

Shaked M. and Shanthikumar J., Stochastic Orders and their Applications. Associated Press, 1994.

De Haan L., and Huang X. (1995) Large Quantile Estimation in a Multivariate Setting, Journal of Multivariate Analysis, 53, 247-263.

Arbia, G.,

Bivariate value at risk. Statistica LXII, 231-247, 2002.

Artzner P., Delbae, F., Heath J. Eber D.,

Coherent measures of risk. Mathematical Finance, 3, 203-228, 1999.

Burgert C. and Rüschendorf L.,

On the optimal risk allocation problem. Statistics & Decisions 24, 153-171, 2006.

Cardin M. and Pagani E.,

Some classes of multivariate risk measures. Mathematical and Statistical Methods for Actuarial Sciences and Finance, 63-73, 2010.

Cascos I. and Molchanov I.,

Multivariate risks and depth-trimmed regions. Finance and stochastics 11(3), 373-397, 2007.

Cascos I., López A. and Romo J.,

Data depth in multivariate statistics. Boletín de Estadística e Investigación Operativa 27(3), 151-174, 2011.

Cascos I. and Molchanov I.,

Multivariate risk measures: a constructive approach based on selections. Risk Management Submitted v3, 2013.

Cousin A. and Di Bernardino E.,

On multivariate extensions of Value-at-Risk. Journal of Multivariate Analysis, Vol. 119, 32-46, 2013.

Daníelsson J. et al.,

Fat tails, VaR and subadditivity. Journal of econometrics 172-2, 283-291, 2013.

Embrechts P. and Puccetti G.,

Bounds for functions of multivariate risks. Journal of Multivariate Analysis 97, 526-547, 2006.

Fernández-Ponce J. and Suárez-Llorens A.,

Central regions for bivariate distributions. Austrian Journal of Statistics 31, 141-156, 2002.

Fraiman R. and Pateiro-López B.,

Quantiles for finite and infinite dimensional data. Journal Multivariate Analysis 108, 1-14, 2012.

Hallin M., Paindaveine D. and Šiman M.,

Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth. Annals of Statistics 38, 635-669, 2010.

Heyde C., Kou S. and Peng X.,

What is a good external risk measure: bridging the gaps between robustness, subadditivity, and insurance risk measure. (Preprint). 2009.

Jessen A. and Mikosh T.,

Regularly varying functions. Publications de l'institute mathématique 79, 2006.

Kong L. and Mizera I.,

Quantile tomography: Using quantiles with multivariate data. ArXiv preprint arXiv:0805.0056v1, 2008.

Laniado H., Lillo R. and Romo J.,

Extremality in Multivariate Statistics. Ph.D. Thesis, Universidad Carlos III de Madrid, 2012

Laniado H., Lillo R. and Romo J.,

Multivariate extremality measure. Working Paper, Statistics and Econometrics Series 08, Universidad Carlos III de Madrid, 2010.

Nappo G. and Spizzichino F.,

Kendall distributions and level sets in bivariate exchangeable survival models. Information Sciences 179, 2878-2890, 2009.

Rachev S., Ortobelli S., Stoyanov S., Fabozzi F.,

Desirable Properties of an Ideal Risk Measure in Portfolio Theory. International Journal of Theoretical and Applied Finance 11(1), 19-54, 2008.

Serfling R.,

Quantile functions for multivariate analysis: approaches and applications. Statistica Neerlandica 56, 214-232, 2002.

Zuo Y. and Serfling R.,

General notions of statistical depth function. Annals of Statistics 28(2), 461-482, 2000.

56 / 57

Thanks

Torres Díaz, Raúl A.

Directional Extreme Value Analysis