

	Part 1	Multidimensional Techniques for Social Network Data
<u> 0</u>	utline	
	 Setting: Multidimensional Data Analy Analysis (SNA) 	vsis (MDA) and Social Network
	 Part 1: to present a framework for th structures with explorative technique 	e treatment of SNA data s of MDA
	 Methods: Smooth factorial analysis- Local Differences-FALD Benali I 	SFA; Factorial Analysis of H. Escofier, B. (1990)
	 Part 2: To define ad hoc relational da effect of external information on network 	ta structures highlighting the orks
	Theoretical frameworks: Homophil	y principle, Social Influence,
	Mainly based on the paper by G. Giordano, M. P. Vitale (2011). (analysis. <i>ADVANCES IN DATA ANALYSIS AND CL</i>	On the use of external information in social network ISSIFICATION, pp.95- 112, Vol. 5.

Multidimensional Techniques for Social Network Data

Background and Aim

Background

Part 1

- **SNA** focuses on **ties** among **interacting units** (Dyad, Triad, Subgroups) to describe the pattern of the social relationships in a network

- the techniques of **MDA** consider statistical observations (at individual level) to obtain syntheses of variables and units

Aim

to present a framework for the analysis of relational data and attribute variables through **Explorative Techniques of Multidimensional Data Analysis**

Part 1	Multidimensional Techniques for Social Network Date
Elements of SNA	
Actor: social entities (individual, corporate, or collective social units)	Triad : consists of a subset of three actors and the (possible) tie(s) among them
Dyad : consists of a pair of actors and the (possible) tie(s) between them	Subgroup : consists of a subset of actors and all ties among them
Network: is the on which ties ar	collection of all actors re to be measured
Ties : linkages between pair of actors (friendship, business, transaction, kinshi	Relation : is the collection of tiesp)of a specific kind among members
Social Network: consists of the relation or relations defined	f a finite set or sets of actors and ned on them (Wasserman, Faust, 1994)

Substantive	Exploratory	Sthocastic
Theories of self-interest Theory of Social capital Strength of Weak Ties Theory Transaction Cost Economics	<i>Network Demography</i> Size, Density	Treat networks as realizations of random variables; Propose a model for the distribution
Contagion theories Social influence, Imitation, modeling, Learning, Mimetic behavior, Similar positions in structure and roles	Role and Positions of actors in the network, Cliques and Subgroups Cohesion and Distance	Fit the model to some observed data; Use the model to predict properties of the network
Cognitive theories Semantic Networks Knowledge Structures Homophily theories Social support theories	Visualization Topological properties Distribution of network statistics	Single Network ERGM – P* Latent Space Network Conditionally Uniform models
Theories of proximity Physical proximity Electronic proximity Influence of distance Influence of accessibility Theories of uncertainty	One-mode, Two-mode, Multiplex network Ego-network	Dynamic Network Continuous-time models Actor-oriented models Dynamic Exponential Random Graph Models Hidden Markov Models
		But First

Part 1	Multidimensional Techniques for Social Network Data
SFA and FALD in SNA	
Entries in adjacency matrix can be seen relation among statistical units defined in the units.	as a particular case of contiguity G . It produces a fuzzy partitioning of
Decomposition of the total variance/ir	nertia into two components:
- local variance between the adjac	ent units
to discover patterns in the data - residual variance	SFA: variability explained by the presence of a contiguity structure
analysis of cohesive sub-group variations	FALD: actors with a prominent role in contiguous groups

Part 1	Multidimensional Techniques for Social Network Data
Main references	
Aluja Banet, T., Lebart, L. (1984) Local a COMPSTAT Proceedings, Havranek	and Partial Principal Component Analysis and Correspondence Analysis, in: T., Sidak Z. & Novak M. (Eds.), Phisyca-Verlag, Vienna, 113-118.
Batagelj, V., Ferligoj A., (1982) Clusterir	ng with relational constraint, Psychometrika, 47, 413-426.
Batagelj V., Ferligoj A.: Clustering relation Berlin 2000, 3-15.	onal data. Data Analysis (ed.: W. Gaul, O. Opitz, M. Schader), Springer,
Benali H. Escofier, B. (1990) Analyse fa Statistique Appliquée, 38, 55-76.	ctorielle lissée et analyse factorielle des différences locales. Revue de
Escofier, B., H. Benali, K. Bachar (1990), How to introduce contiguity in correspondence
analysis? Application to image segment	tation (French), Statistique et Analyse des Donnees, 15, 61-92.
Faust K. (2005) Using Correspondance Social Network Analysis, Carrington F 117-147.	Analysis for Joint Displays of Affiliation Networks, in: Models and Methods in P., Scott J. & Wasserman S. (Eds.), Cambridge University Press, Cambridge,
Freeman, L. C. (2005). Visualizing Socia	al Networks, in: Models and Methods in Social Network Analysis,
Carrington P., Scott J. & Wasserman S.	(Eds.), Cambridge University Press, Cambridge, 117-147.
Giordano, G., Vitale, M.P. (2011). On the Analysis and Classification, 5, pp.95-	e use of external information in social network analysis. Advances in Data 112.
Lebart L. (1969) Analyse statistique de l	la contiguité. Publications de l' ISUP, 81–112.
Lebart L. (2006) Assessing self organizi Science Ltd. Oxford, UK.	ing maps via contiguity analysis, Neural Networks 19:847 – 854, Elsevier
Tukey, J.W. (1977), Exploratory Data Ar	nalysis, Addison-Wesley, Reading.
Wasserman S., Faust K., (1989) Canon Sociological Methodology: 19, pp. 1-4	ical Analysis of the Composition and Structure of Social Networks, 42.

Notation and Definition $A_{(nxp)}$ affiliation matrix (binary); n actors; p events $a_{ij} = 1 \rightarrow i$ th actor is present at the j-th event $(i=1,, n; j=1,, p)$ $X_{(nxm)}$ n actors; r nominal variables expanded into m dummy variables $x_{ik} = 1 \rightarrow i$ th actor belongs to the k-th category $(i=1,, n; k=1,, m)$ $Z'_{(pxq)}$ p events; s nominal variables expanded into q dummy variables $z_{hj} = 1 \rightarrow j$ -th event belong to the h-th category	Part 2	Multidimensional Techniques for Social Network Data
$ \begin{array}{lll} \textbf{A}_{(nxp)} & \mbox{affiliation matrix (binary); n actors; p events} \\ & a_{ij} = 1 \ -> i-th actor is present at the j-th event} \\ & (i=1,, n; \ j=1,, p) \end{array} \\ \textbf{X}_{(nxm)} & \mbox{n actors; r nominal variables expanded into m} \\ & \mbox{dummy variables} \\ & x_{ik} = 1 \ -> i-th actor belongs to the k-th category} \\ & (i=1,, n; \ k=1,, m) \end{aligned} \\ \textbf{Z'}_{(pxq)} & \mbox{p events; s nominal variables expanded into q} \\ & \mbox{dummy variables} \\ & \mbox{z}_{hj} = 1 \ -> j-th event belong to the h-th category} \end{aligned}$	Notati	on and Definition
$\mathbf{X}_{(nxm)} = 1 \implies i\text{-}k \text{-}k \text{ for is present at the } j\text{-}k \text{ for event} \\ (i=1,, n; j=1,, p)$ $\mathbf{X}_{(nxm)} = n \text{ actors; } r \text{ nominal variables expanded into } m \\ \text{dummy variables} \\ x_{ik} = 1 \implies i\text{-}k \text{ th actor belongs to the } k\text{-}k \text{ th category} \\ (i=1,, n; k=1,, m)$ $\mathbf{Z'}_{(pxq)} = p \text{ events; } s \text{ nominal variables expanded into } q \\ \text{dummy variables} \\ z_{hj} = 1 \implies j\text{-}k \text{ event belong to the } h\text{-}k \text{ category}$	A (nxp)	affiliation matrix (binary); <i>n</i> actors; <i>p</i> events
(i=1,, n; j=1,, p) X (nxm) <i>n actors; r</i> nominal variables expanded into <i>m</i> dummy variables $x_{ik} = 1 \rightarrow i$ -th actor belongs to the <i>k</i> -th category (i=1,, n; k=1,, m) Z' (pxq) <i>p</i> events; <i>s</i> nominal variables expanded into <i>q</i> dummy variables $z_{hj} = 1 \rightarrow j$ -th event belong to the <i>h</i> -th category		$a_{ij} = 1 \rightarrow i$ -th actor is present at the <i>j</i> -th event
$ \begin{array}{c} \textbf{X}_{(nxm)} & n \ actors; \ r \ nominal \ variables \ expanded \ into \ m \\ dummy \ variables \\ x_{ik} = 1 \ -> \ i \ th \ actor \ belongs \ to \ the \ k \ th \ category \\ (i=1, \ n; \ k=1, \ m) \\ \textbf{Z'}_{(pxq)} & p \ events; \ s \ nominal \ variables \ expanded \ into \ q \\ dummy \ variables \\ z_{hj} = 1 \ -> \ j \ th \ event \ belong \ to \ the \ h \ th \ category \\ \textbf{Z'}_{(pxq)} & p \ events; \ s \ nominal \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \\ dummy \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ variables \ expanded \ into \ q \ dummy \ variables \ expanded \ variables \ variables \ expanded \ variables \ variables \ variables \ variables \ variables \ expanded \ variables \ variab$		(i=1,, n; j=1,, p)
$\mathbf{Z'}_{(pxq)} \qquad \begin{array}{l} x_{ik} = 1 \rightarrow i \text{-th actor belongs to the } k \text{-th category} \\ (i=1,, n; k=1,, m) \\ p \text{ events; } s \text{ nominal variables expanded into } q \\ dummy \text{ variables} \\ z_{hj} = 1 \rightarrow j \text{-th event belong to the } h \text{-th category} \end{array}$	X (nxm)	<i>n actors; r</i> nominal variables expanded into <i>m</i> dummy variables
$\mathbf{Z'}_{(pxq)} \qquad p \text{ events; } s \text{ nominal variables expanded into } q \\ dummy \text{ variables} \\ z_{hj} = 1 \rightarrow j\text{-th event belong to the } h\text{-th category}$		$x_{ik} = 1 \rightarrow i$ -th actor belongs to the <i>k</i> -th category
$\mathbf{Z'}_{(pxq)} \qquad p \text{ events; } s \text{ nominal variables expanded into } q \\ dummy \text{ variables} \\ z_{hj} = 1 \rightarrow j \text{-th event belong to the } h \text{-th category}$		(i=1,, n; k=1,, m)
$z_{hj} = 1 \rightarrow j$ -th event belong to the <i>h</i> -th category	Z′ _(pxq)	<i>p</i> events; <i>s</i> nominal variables expanded into <i>q</i> dummy variables
		$z_{hi} = 1 \rightarrow j$ -th event belong to the <i>h</i> -th category
(h=1,, q; j=1,,p)		(h=1,, q; j=1,,p)

Part 2	Multidimensional Techniques for Social Network Data
Use of the coefficients	B and C in SNA
The B e C coefficients have original affiliation matrix matrices G _x and G _z (<i>actor</i>	e been used to approximate the A and to derive the adjacency is x actors)
$\hat{\mathbf{B}} \Rightarrow \hat{\mathbf{A}}$	$G_{x} \Rightarrow G_{x}$
$\hat{\mathbf{C}} \Rightarrow \hat{\mathbf{A}}$	$G_z \Rightarrow G_z$
$\mathbf{G}_{\mathbf{x}}$ and $\mathbf{G}_{\mathbf{z}}$ are then analyze for peculiar patterns of ties induced by the effect of the	ed by SNA methods specially to look and homogeneous groups of actors e external information.

Part 2											Mu	tidim	ensior	nal Te	chniqu	ies foi	Socia	I Netwo	ork Da
Data struc	τυ	re																	
	Z	E1	E2	E3	E4	E5	E6	E7	E8	E9	E 10	E11	E12						
	Z11	1	1	1	1	0	0	0	0	0	0	0	0						
	Z12	0	0	0	0	1	1	1	1	0	0	0	0						
	Z13	0	0	0	0	0	0	0	0	1	1	1	1						
	A	E1	E2	E3	E4	E5	E6	E7	E8	E9	E 10	E11	E12	X	X11	X 12	X13	X21	X22
	1	1	1	1	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0
	2	1	1	1	1	1	1	1	1	1	0	1	0	2	1	0	0	1	0
	3	1	1	1	1	1	0	0	1	0	0	0	0	3	1	0	0	1	0
	4	1	1	0	1	1	1	0	0	0	0	0	1	4	1	0	0	1	0
	5	0	0	1	1	0	1	1	0	1	0	0	0	5	1	0	0	1	0
	6	1	1	1	1	1	1	1	1	0	0	0	0	6	1	0	0	1	0
1 12 13 14 16 76 77 18 19 1	0 11 12	13 14 11	5 16 17	18 0	0	1	0	1	1	0	1	0	1	7	0	1	0	1	0
NVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	(M)X	AM		0	1	1	0	1	1	0	0	0	0	8	0	1	0	1	0
11/11/2002/02/02	KK (KAN	XXI.	0	1	1	0	1	0	0	0	0	0	9	0	1	0	1	0
	KAK (HAN	XXX I	1	0	1	0	1	1	0	0	0	0	10	0	1	0	0	1
	KU A	HZ H		0	0	1	1	1	1	1	0	1	1	11	0	1	0	0	1
E1 E2 E3 E4 E5 E6	E7 E8	E9 E10	EII	0	0	1	1	1	1	0	0	0	0	12	0	1	0	0	1
	13	0	1	0	1	0	0	0	0	1	0	0	1	13	0	0	1	0	1
	14	0	0	0	0	0	0	0	0	1	1	1	1	14	0	0	1	0	1
	15	0	0	0	1	0	1	0	0	1	1	1	1	15	0	0	1	0	1
	16	0	0	0	0	0	0	0	0	0	0	1	1	16	0	0	1	0	1
	17	0	0	0	0	1	1	0	0	1	1	1	1	17	0	0	1	0	1
	18	1	0	0	0	0	0	0	0	1	1	1	1	18	0	0	1	0	1

Part 2	Multidimensional Techniques for Social Network Data
Data source: 81 academic institution	scientists involved in the Economics & Statistics field in an in Southern Italy
	(MIUR database and Local Research Archive)
Relational Data	A = affiliation matrix 81 x 358 81 scientists, 358 publications and the cells report 1 if two authors co-authored a paper
Data vectors Defi	nition (Nominal Variables)
For authors	X = matrix 81 x 4 4 columns dummy coding of the 2 nominal variables <i>academic</i> <i>position</i> and <i>research specialty</i> (assistant professor vs full professor; statistics vs economics)
For publications :	 Z = matrix 4 x 358 4 rows dummy coding of the 2 nominal variables <i>type</i> and <i>number</i> of author in publication (article – no article; single vs co-authored publication)

	Part	2			Multidim	nensional To	echniqu	ues fo	r Soc	ial N	letwor
Col	mp	arison	of pai	titio	n in G, G	i _z and	d G	x			
								Gz			
						G	1		2	3	Tota
		Aut	nors at	tribut	es	1	5				
	Total	Economists	Statisticians	Full Prof.	Assistant Prof .	2	64		1		65
G						3	1		2		3
1	5	100,00	0,00	60,00	40,00	4	_		1	1	-
2	65	95,38	20,00	58,46	41,54	-	1	-	•	1	
3	3	0,00	100,00	100,00	0,00	5	T	-	L	Т	-
4	2	100,00	0,00	100,00	0,00	6	2		1		-
5	3	100,00	0,00	33,33	66,67	Total	73	(5	2	83
6	3	0,00	100,00	100,00	0,00			_			
Gz								Gx	(
1	73	78,08	21,92	58,90	41,10	G	1	2	3	4	Tota
2	6	50,00	50,00	83,33	16,67	1	3	2			!
3	2	100,00	0,00	100,00	0,00	2	32	20	6	7	6
Gx						3			٦		
1	38	100,00	0,00	100,00	0,00	1	٦		5		
2	24	100,00	0,00	0,00	100,00	4	2 (_			
3	12	0,00	100,00	100,00	0,00	5	1	2			
4	7	0,00	100,00	0,00	100,00	6			3		
						Total	38	24	12	7	8

