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Chapitre 2 — Courbes paramétrées (suite)

1 Exercice

1. Voici la courbe représentative de : x(t) =
(t + 1)3

t(2t + 1)
y(t) =

1
t (t2 − 1)
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Le but de l’exercice est de reconstituer les éléments de raisonnement qui ont conduit à ce tracé,
notamment le tableau de variations.

2. On observe d’abord la présence de 10 branches infinies et 5 asymptotes. Les formules donnant
x(t) et y(t) le confirment. Une au moins des deux fonctions devient infinie quand t s’approche de :

−∞ − 1 −
1
2

0 1 +∞

La première version du tableau de variations était donc :

t −∞ − 1 −
1
2 0 1 +∞

x(t)
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣

y(t)
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣

3. On va faire les développements limités de x(t) et y(t) en ces points.

t = ±∞ On écrit les développements limités de x
(1
h

)
et y

(1
h

)
:

x
(1
h

)
=

(1 + h)3

h(2 + h)
=

1
2h

+ · · · y
(1
h

)
=

h3

1 − h2 = h3 + · · ·

On en déduit leur développement limité x(t) et y(t) par rapport à t :

x(t) =
t
2

+ · · · y(t) =
1
t3 + · · ·
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t = −1 x(−1 + h) =
h3

(1 − h)(1 − 2h)
= h3 + · · · y(−1 + h) =

1
h(2 − h)(1 − h)

=
1
2h

+ · · ·
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t =
−1
2

x
(−1

2
+ h

)
=

(2h + 1)3

8h(2h − 1)
=
−1
8h

+ · · · y
(−1

2
+ h

)
=

8
(2h − 3)(4h2 − 1)

=
8
3

+
16h
3

+ · · ·
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t = 0 x(t) =
(t + 1)3

t(2t + 1)
=

1
t

+ 1 + t − t2 + · · · y(t) =
1

t (t2 − 1)
= −

1
t
− t − t3 + · · ·

y(t)
x(t)
→ −1 y(t) + x(t)→ 1 y(t) = −x(t) + 1 − t2 + · · ·
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t = 1 x(1 + h) =
(h + 2)3

(h + 1)(2h + 3)
=

8
3
−

4h
9

+ · · · y(1 + h) =
1

h(h + 1)(h + 2)
=

1
2h

+ · · ·
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-4 -2 2 4

-6

-4

-2

2

4

6

-∞ +∞

1+

1

0

0+

-1

-1+

+-1
2(   ) -1

2(   )

Maintenant, on peut reconstituer le tableau de variations :

t −∞ − 1 −
1
2 ? 0 ? 1 +∞

x(t) −∞ ↗ 0 ↗ +∞
∣∣∣∣∣∣∣∣−∞ ↗ ?↘ −∞

∣∣∣∣∣∣∣∣+∞ ↘
8
3 ↗ +∞

y(t) 0 ↘ −∞
∣∣∣∣∣∣∣∣ +∞↘ 8

3 ↗ +∞
∣∣∣∣∣∣∣∣−∞ ↗ ?↘ −∞

∣∣∣∣∣∣∣∣ +∞↘ 0

4. Des questions

Q 1 : Est-ce que la courbe fait des petites oscillations qu’on n’aurait pas vues ?

Q 2 : Est-ce que la courbe coupe ses asymptotes ?

• y(t) =
1

t (t2 − 1)
, 0 quel que soit t

• x(t) =
(t + 1)3

t(2t + 1)
, 0 quand t , −1

• y(t) −
8
3

=
(2t + 1)

(
4t2
− 2t − 3

)
3t(1 − t2)

, 0 quand t ,
−1
2

• x(t) −
8
3

=
(t − 1)

(
3t2
− 4t − 3

)
3t(2t + 1)

, 0 quand t , +1

• y(t) − x(t) − 1 =
t2

(
t2 + t + 1

)
(t2 − 1)(2t + 1)

, 0 quand t , 0

4
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Q 3 : Est-ce que la courbe est symétrique par rapport à la droite y = x ?

M(u) → x(u) y(u)

M(v) → x(v) y(v)

Symétrie

x(u) = y(v)

y(u) = x(v)

x(u) − y(v) =
(u + 1)3

u(2u + 1)
−

1
v (v2 − 1)

=
(uv + u + v)

(
u2v2

− u2v + 2uv2
− uv − 2u + v2

− 1
)

uv(2u + 1)(1 − v2)

x(v) − y(u) =
(uv + u + v)

(
u2v2

− v2u + 2vu2
− uv − 2v + u2

− 1
)

uv(2v + 1)(1 − u2)

Conclusion : Si uv + u + v = 0 les points M(u) et M(v) sont symétriques par rapport à la droite
d’équation y = x .

5. Il resterait à chercher les coordonnées du point double . . .

2 Courbes de Lissajous

1. Les courbes de Lissajous sont les courbes admettant un paramétrage du type :

x(t) = sin(t) y(t) = sin(αt + ϕ)

avec α , 0 et ϕ quelconque.

Exemple :

La lemniscate de Gerono

x(t) = sin(t)

y(t) = sin(2t)

2. Une courbe de Lissajous est contenue dans un carré.

Les courbes de Lissajous n’ont donc pas de branches infinies, mais comme elles tournent enfermées
dans un carré, il leur arrive d’avoir des points multiples .

5
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3. Quand α =
p
q

est un nombre rationnel, la courbes de Lissajous se referme : c’est une courbe fermée

sur laquelle le point mobile repasse indéfiniment et périodiquement :

sin(t + q2π) = sin(t)

sin
(

p
q

(t + q2π) + ϕ

)
= sin

(
p
q

t + ϕ

)
 ⇒ M(t+q2π) = M(t)

Exemple : α =
4
5

ϕ =
3π
11

Quand α n’est pas un nombre rationnel, la courbe ne se referme pas et, plus t augmente, plus on a
l’impression que le point mobile remplit le carré .

Exemple :

α = π

ϕ = 0
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4. Dorénavant α est un entier et on cherche les symétries des courbes.

Exemples : x(t) = sin(t) y(t) = sin(nt + 0, 5)

n=1 n=2 n=3

n=4 n=5 n=6

x(t + π) = sin(t + π) = − sin(t) = −x(t)

y(t + π) = sin(nt + nπ + ϕ) = (−1)n sin(nt + ϕ) = (−1)ny(t)

• Si n est impair , la courbe possède une symétrie centrale.

M(t+π)

M(t)

M(t+π) M(t)

• Si n est pair , la courbe possède une symétrie par rapport à l’axe des y.

5. Dans le cas particulier ϕ = 0 et n pair , les courbes ont encore plus de symétries.

n=1 n=2 n=3
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n=4 n=5 n=6

x(π − t) = sin(π − t) = sin(t) = x(t)

y(π − t) = sin(nπ − nt) = −(−1)n sin(nt) = −(−1)ny(t)

• Si n est pair , la courbe possède une symétrie par rapport à l’axe des x.

• En la combinant avec la symétrie par rapport à l’axe des y, on obtient une symétrie centrale .

x(2π − t) = sin(2π − t) = − sin(t) = −x(t)

y(2π − t) = sin(2nπ − nt) = − sin(nt) = −y(t)

Remarque : Lorsque n est impair , la courbe
(

sin(t), sin(nt)
)

représente un polynôme de degré n .

6. Exercice : Trouver les coordonnées des points doubles de la courbe :

x(t) = sin(t) y(t) = sin(4t +
π
6

)

A

C B

• A = M(0) = M(π) =
(
0,

1
2

)
• B et C sont symétriques par rapport à l’axe vertical.

• B = M(u) = M(v) avec :


u , v

0 < u < π

0 < v < π

Rappels : (La lettre k désigne un entier relatif ).

α = β + k 2π ⇒ sin(α) = sin(β)

α = π − β + k 2π ⇒ sin(α) = sin(β) sin(α) = sin(β) ⇒


α = β + k 2π

ou

α = π − β + k 2π

Recherche du point B

M(u) = M(v) ⇐⇒


sin(u) = sin(v)

et

sin
(
4u +

π
6

)
= sin

(
4v +

π
6

)
8
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Peut-on avoir u = v + k 2π ?

0 < u < π

0 < v < π

 ⇒ −π < u − v < π ⇒ Non

Peut-on avoir u = π − v + k 2π ?

0 < u < π

0 < v < 2pi

 ⇒ 0 < u + v < 2π ⇒ u + v = π ⇒ v = π − u

Dans ce cas :

sin
(
4u +

π
6

)
= sin

(
4v +

π
6

)
⇒ sin

(
4u +

π
6

)
= sin

(
4π − 4u +

π
6

)
= sin

(
− 4u +

π
6

)
⇒ sin

(
4u +

π
6

)
= sin

(
− 4u +

π
6

)
Soit 4u +

π
6

= −4u +
π
6

(1ère possibilité), soit 4u +
π
6

= π + 4u −
π
6

(2de possibilité).

2de possibilité : 4u +
π
6

= π + 4u −
π
6

+ k 2π ⇒ −
2π
3

= k 2π ⇒ Non

1ère possibilité : 4u +
π
6

= −4u +
π
6

+ k 2π ⇒ u = k
π
4

• k = 1 u =
π
4

v =
3π
4

M(u) = M(v) =
( √2

2
,
−1
2

)
• k = 2 u =

π
2

v =
π
2

���u = v

• k = 3 u =
3π
4

v =
π
4

M(u) = M(v) =
( √2

2
,
−1
2

)
Conclusion : A =

(
0,

1
2

)
B =

( √2
2
,
−1
2

)
C =

(−√2
2

,
−1
2

)

3 Courbes en polaires

1. Dans le plan muni d’un repère orthonormé (O,−→ı ,−→ ) , on peut repérer les points par leurs
coordonnées polaires .

O

P
ρ

θ

i
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L’idée est donc de repérer les points d’une courbe en prenant θ pour paramètre.

O

M(θ)
ρ(θ

)

θ

i

Il faut se rappeler que pour un point donné, θ n’est défini qu’à 2π près. Il faudra donc faire appel à
la continuité pour que deux points voisins de la courbe aient des θ voisins. Cependant, si la courbe
traverse l’origine , cela pose problème :

O

M(θ)

θ

M(θ')

θ'

La solution consiste à accepter des valeurs négatives de ρ .

2. On se donne une fonction ρ (de signe quelconque). La courbe définie en polaires par ρ(θ) est la
trajectoire du point mobile M(θ) :

x(θ) = ρ(θ) cos(θ) y(θ) = ρ(θ) sin(θ)

Exemple 1 : ρ(θ) = C donne un cercle centré à l’origine.

Exemple 2 : ρ(θ) =
C

cos(θ)
donne une droite verticale.

Exemple 3 : ρ(θ) =
C

1 + e cos(θ)
donne une conique : une ellipse quand e < 1, une parabole quand

e = 1 , une hyperbole quand e > 1

Exemple 4 : Les spirales :

ρ(θ) = Cθ

spirale d’Archimède

ρ(θ) = eCθ

spirale logarithmique
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Remarque : Remplacer ρ(θ) par ρ(θ − α) revient à faire tourner la courbe d’un angle α .

3. Le tracé des courbes en polaires est un cas particulier de tracé de courbes paramétriques, mais
il a ses spécificités.

D’un point de vue concret, on peut imaginer un plateau tournant sur lequel est dessinée une droite
graduée ayant pour origine le point de rotation.
Pendant que le plateau tourne à vitesse constante, un point coulisse sur la droite graduée de façon
qu’au temps t , son abscisse soit ρ(t) .
La courbe définie en polaires par ρ est la trace du point sur le plan fixe.

Exemple : Un enfant marche en ligne droite sur le plateau d’un
manège en allant du centre vers le bord de façon uniforme . Sa
trajectoire par rapport au sol est une spirale d’Archimède .

4. Le plan est rapporté au repère (O,−→ı ,−→ ). On pose :

−→ı (θ) = cos(θ)−→ı + sin(θ)−→︸                               ︷︷                               ︸
vecteur radial

−→ (θ) = − sin(θ)−→ı + cos(θ)−→︸                                  ︷︷                                  ︸
vecteur orthoradial

O

θ

θ

i

(θ)ij
j(θ)

−→ı ′ (θ) = −→ (θ)

−→ (θ) = −→ı
(
θ +

π
2

)

−−−−−→
OM(θ) = ρ(θ)−→ı (θ) ⇒

−→
V (θ) = ρ′(θ)−→ı (θ) + ρ(θ)−→ (θ)

O

ρ

θ

M(θ)
(θ)i

j(θ)
V

ρ'(θ)

ρ(θ)
• Si ρ(θ) varie très vite, ρ′(θ) a une grande valeur
absolue et la courbe croise fortement le vecteur ortho-
normal.

• Si ρ(θ) ne varie pas beaucoup, ρ′(θ) est presque nul.
La courbe est tangente au vecteur orthonormal, donc
perpendiculaire au vecteur radial.
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−→
V (θ) = ρ′(θ)−→ı (θ) + ρ(θ)−→ (θ)

−−→
∆M
∆θ

=
∆ρ

∆θ
−→ı (θ) + ρ−→ (θ)

−−→
∆M = ∆ρ−→ı (θ) + ρ∆θ−→ (θ)

−−→
dM = dρ−→ı (θ) + ρ dθ−→ (θ) O

θ

M
(θ)i

j(θ)
∆M

ρΔθ
Δρ

Cas de l’origine :
Quand ρ(θ) = 0 , le point passe par l’origine et la tangente est la droite d’angle θ :

−→
V (θ) = ρ′(θ)−→ı (θ)

5. Recherche des asymptotes

On reprend la méthode déjà vue pour les courbes paramétrées en supposant que x(θ) = ρ(θ) cos(θ)
et y(θ) = ρ(θ) sin(θ) tendent vers l’infini quand θ tend vers α .

Pour obtenir y = ax + b , l’équation de l’asymptote, il fallait d’abord chercher a = lim
θ→α

(
y(θ)
x(θ)

)
puis

b = lim
θ→α

(
y(θ) − a x(θ)

)
.

D’abord lim
θ→α

(
y(θ)
x(θ)

)
= tan(α) , mais cette limite peut être infinie, par exemple quand α =

π
2

. C’est

pourquoi, à la place de b = lim
θ→α

(
y(θ)− tan(α) x(θ)

)
, on calculera : c = lim

θ→α

(
y(θ) cos(α)−x(θ) sin(α)

)
.

y(θ) cos(α) − x(θ) sin(α) = ρ(θ)
(

sin(θ) cos(α) − cos(θ) sin(α)
)

= ρ(θ) sin(θ − α)

Résultat : Si c = lim
θ→α

ρ(θ) sin(θ− α) existe, l’asymptote

a pour équation cartésienne :

y(θ) cos(α) − x(θ) sin(α) = c

C’est la droite de vecteur directeur −→ı (α) qui passe par
le point A tel que

−−→
OA = c−→ (α) . O

α
(α)ij(α)

A

M(θ)
(α)i
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