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Sensor network measurements: p = 24, q = 100, n = 3000
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Internetwork traffic: p = 11, q = 12, n = 365

Patwari, H and Pacholski, ”Manifold learning visualization of network traffic data,” SIGCOMM 2005
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Statistical estimation of precision: Wishart cov model

Sample covariance matrix constructed from i.i.d. zi ∼ N(0,Σ)

Sn =
1

n

n∑
i=1

ziz
T
i

• Then: Sn Wishart distributed with mean Σ

Sn ∼ f (Sn; Σ) ∝ |Σ|−1/2 exp

(
−1

2
tr{SnΣ−1}

)
• Penalized MLE of Θ = Σ−1

Θ̂ = aminΘ (tr {SnΘ} − log |Θ|+ R1(Θ))

• Gaussian graphical models (GGM): Lauritzen (1996),

• Sparsity regularization: Meinshausen-Buhlmann (2006),
Yuan-Lin (2007), Banerjee-ElGhaoui-d’Aspremont (2008),
Friedman-Hastie-Tibshirani (2008), Chiquet (2010).
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Statistical estimation of covariance: Gaussian cov model

• Assumption: Sn i.i.d. Gaussian distributed with mean Σ

Sn ∼ f (Sn; Σ) ∝ exp

(
− 1

2σ2
‖Sn −Σ‖2

F

)
Frobenius norm of square matrix A:

‖A‖2
F =

d∑
i=1

d∑
j=1

|Ai ,j |

• Penalized MLE of Σ

Σ̂ = aminΣ‖Sn −Σ‖2
F + R2(Σ)

• Cov estimation: Furrer-Bengtsson (2007), Gini-Greco (2002),
Lounici (2012), Vershynin (2011)

• Shrinkage regularization: Ledoit-Wolf (2000),
Schafer-Strimmer (2007), Chen-Wiesel-Eldar-H (2010)

• Sparsity reg: Dempster (1972), Rothman-Bickel-Levina (2008)
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Sparse covariance and precision models

Two types of sparse covariance models:

• Sparse correlation graphical models:
• Most correlations are zero, few marginal dependencies
• Examples: M-dependent processes, moving average (MA)

processes

• Sparse inverse-correlation graphical models
• Most inverse covariance entries are zero, few conditional

dependencies
• Examples: Markov random fields, autoregressive (AR)

processes, global latent variables

• Sometimes correlation matrix and its inverse are both sparse.
• Often only one of them is sparse.
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Gallery of sparsity patterns and associated graphs
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Sparsity and multivariate dependency

Two types of sparse covariance models:

• Sparse correlation graphical models:
• Most correlations are zero, few marginal dependencies
• Examples: M-dependent processes, moving average (MA)

processes

• Sparse inverse-correlation graphical models
• Most inverse covariance entries are zero, few conditional

dependencies
• Examples: Markov random fields, autoregressive (AR)

processes, global latent variables

• Sometimes correlation matrix and its inverse are both sparse.
• Often only one of them is sparse.
• Another way to reduce parameter dimension: Kronecker product
constraint.
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Kronecker product model for covariance matrix

Figure: A saturated model with 18× 18 covariance matrixl has
18*17/2=153 unknown correlation parameters. A Kronecker product
covariance model reduces number of parameters to 3 + 15 = 18 unknown
correlation parameters.
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Sparse Kronecker product model for covariance matrix

Figure: A sparse Kronecker product covariance model reduces number of
parameters from 153 to 7 unknown correlation parameters.
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Kronecker products of square matrices

Let A be a p × p matrix and B be a q × q matrix. For d = pq
define the d × d matrix C by the Kronecker product factorization
C = A

⊗
B where

A
⊗

B =

 a11B · · · a1pB
...

. . .
...

ap1B · · · appB


Kronecker product properties (VanLoan-Pitsianis 1992):

• C is p.d. if A and B are p.d.

• C−1 = A−1
⊗

B−1 if A and B are invertible.

• |C| = |A| |B|
• Linear Kronecker equations benefit from reduced computation

(A
⊗

B)z = r ⇔ BZAT = R
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Matrix variate normal likelihood model

Let z ∈ IRd , where d = pq, be zero mean with covariance matrix
Σ = A

⊗
B, where A ∈ IRp×p and B ∈ IRq×q are p.d.

When z is Gaussian distributed it is said to follow the matrix
variate normal distribution (Dawid 1981, Gupta-Nagar 1999)

f (z; A,B) ∝ (|A| |B|)−1/2 exp

(
−1

2
zT (A−1

⊗
B−1)z

)
= (|X| |Y|)1/2 exp

(
−1

2
zT (X

⊗
Y)z

)
X = A−1, Y = B−1.

MLE of Σ = A
⊗

B and Θ = X
⊗

Y
• Likelihood function is biconvex in X and Y
• Can solve for MLE using alternating maximization methods

• “Flip-flop” algorithms proposed by Dutilleul (1999) and
Werner-Jansen-Stoica (2008)
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Sparse matrix variate normal model: the KGlasso

Let z follow the matrix normal normal distribution with precision
matrix Θ = X

⊗
Y. If

‖Θ‖0 ≤ O(pq)

then the matrix variate normal model is said to be sparse.

Algorithms for estimating sparse Θ try to solve

(X̂, Ŷ) = aminX,YJλ(X,Y)

where

Jλ(X,Y) = tr{Sn(X
⊗

Y)} − log(|X| |Y|) + λX‖X‖1 + λY ‖Y‖1

Alternating minimization algorithms

• Transposable regularized covariance algorithm
(Allen-Tibshirani 2010)

• KGlasso algorithm (Tsiligkarides-Zhou-H 2012)
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KGlasso Algorithm

Algorithm 1 KGlasso (Tsiligkaridis et al. [2012])

1: Input: Ŝn, p, f , n, λX > 0, λY > 0
2: Output: Θ̂KGlasso

3: Initialize Ainit to be positive definite.
4: Â← Ainit

5: repeat
6: B̂← 1

p

∑p
i ,j=1 [Â−1]i ,j Ŝn(j , i)

7: Y̌ ← argminY∈Sq
++

tr(YB̂)− log |Y|+ λY |Y|1
8: Â← 1

q

∑q
k,l=1 [B̂−1]k,l Ŝn(l , k)

9: X̌← argminX∈Sp
++

tr(XÂ)− log |X|+ λX |X|1
10: until convergence
11: Θ̂KGlasso ← X̌⊗ Y̌

Computational complexity: O(p3 + q3) (KGlasso) vs O(p3q3) (Glasso).
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Limit Points of KGlasso (Tsiligkaridis et al. [2012])

Define J
(k)
λ = Jλ(X(k),Y(k)) for k = 0, 1, 2, . . . .

Theorem

1 If Ŝn is positive definite, KGlasso converges to a fixed point.

Also, we have J
(k)
λ ↘ J

(∞)
λ .

2 Assume that n > pq and that the KGlasso is not initialized at
a local maximum. Then the algorithm converges to a local
minimum.
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High dimensional convergence rates for p.d. Ŝn ∈ IRd×d

Convergence rates in n, p, q [Yuan-Lin 2008, Tsiligkaridis-H 2012]

1 Θ̂SCM = aminΘ{tr(ΘŜn − log |Θ|)}. Then:

‖Θ̂−Θ‖F = O
(√

p2q2/n
)

2 Θ̂GLasso = aminΘ{tr(ΘŜn)− log |Θ|) + λ|Θ|1}. If
λ �

√
pqlog(pq)/n. Then:

‖Θ̂GLasso −Θ‖F = O
(√

pqlog(pq)/n
)

3 Θ̂FF = aminX,Y{tr((X
⊗

Y)Ŝn)− log(|X| |Y|)}. Then:

‖ΘFF −Θ‖F = O
(√

(p2 + q2)log(p + q)/n
)

4 Θ̂KGlasso = aminX,Y{tr(ΘŜn)− log |Θ|+ λX |X|1 + λY |Y|1}.
If λX , λY �

√
(p + q)log(p + q)/n. Then:

‖ΘKGlasso −Θ‖F = O
(√

(p + q)log(p + q)/n
)
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Convergence rates in n, p, q [Yuan-Lin 2008, Tsiligkaridis-H 2012]

1 Θ̂SCM = aminΘ{tr(ΘŜn − log |Θ|)}. Then:
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4 Θ̂KGlasso = aminX,Y{tr(ΘŜn)− log |Θ|+ λX |X|1 + λY |Y|1}.
If λX , λY �

√
(p + q)log(p + q)/n. Then:

‖ΘKGlasso −Θ‖F = O
(√

(p + q)log(p + q)/n
)

25 / 56



Motivation and Background Kronecker models Convergence analysis Kronecker sum model Conclusion References

Phase transition maps
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Phase transition maps
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Phase transition boundaries in p vs. n plane (p = q)

Figure: Regions of convergence for KGlasso (below upper curve), FF
(below second highest curve), Glasso (below third highest curve), and
standard sample covariance matrix estimator (SCM) (bottom curve).
These regions are obtained from the analytical expressions in eqns. (??),
(??), (??) and (??), respectively.
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Kronecker sum decomposition

Theorem (VanLoan-Pitsianis 1993)

Any pq × pq matrix C can be represented as

C =
r∑

i=1

αiAi

⊗
Bi

for some r , some sequence of Ai ∈ IRp×p and Bi ∈ IRq×q and
some coefficients αi . For given p, q the minimal feasible value of
r = r(p, q) is called the (p, q)-separation rank of C.
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Towards a Kronecker sum approximation to Sn

Theorem (Eckart-Young (1936), Schmidt (1907))

For matrix D ∈ IRm,n and r > 0 the solution to

min
C:rank(C)≤r

‖D− C‖F

is the truncated SVD of D

C =
r∑

i=1

σi ξiν
T
i

where σ1 ≥ · · · ≥ σmin(m,n) are singular values and {ξi ,νi}
min(m,n)
i=1

are associated singular vectors of D.
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Towards a Kronecker sum approximation to Sn

Nuclear norm convex relaxation of EY (Fazel 2002,
Recht-Fazel-Parillo 2007, Hiriart-Urruty and Le 2011):

min
C∈IRm,n

{‖D− C‖2
F + β‖C‖∗}

where ‖C‖∗ =
∑min(m,n)

i=1 σi (C).

⇒ Applied to covariance matrices Sn ∈ IRd×d (Lounici, 2012):

min
C∈Sd+
{‖Sn − C‖2

F + β‖C‖∗}

where Sd
+ = {C : C ∈ IRd×d and C p.s.d.}.

• Lounici gave oracle bounds on accuracy of the solution Cβ.

⇒ convex relaxation for Kronecker sum approximation?
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Reduced rank Kronecker sum approximation

Reduced rank Kronecker sum approximation

min
S(A,B):rank(S(A,B))≤r

‖Sn − S(A,B)‖2
F

where Sn is the sample covariance matrix and

S(A,B) =
r∑

i=1

αiAi

⊗
Bi

Here αi , Ai , Bi are to be determined while p, q are fixed.

Solution of this problem appears difficult (Hiriarty-Urruty and Le
2013).
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Alternative: use permuted approximation error

Consider the following rank one permuted representation of the
Frobenius norm of Kronecker products (VanLoan-Pitsianis 1992).

For any matrices D ∈ IRpq×pq, A ∈ IRp×p and B ∈ IRq×q:

‖D− A
⊗

B‖2
F = ‖R(D)− vec(A)vec(B)T‖2

F

where

• vec(•) is the vectorization operator, e.g. when applied to A it

maps IRp×p to IRp2

• R(•) is a permutation rearrangement operator mapping

IRpq×pq to IRp2×q2
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Permutation-rearrangement operator pair R, R−1

Let D ∈ IRpq×pq have the q × q block partition

D =

 D1:q,1:q · · · D1:q,(p−1)q:pq
...

. . .
...

D(p−1)q:pq,1:q · · · D(p−1)q:pq,(p−1)q:pq


Define the rearrangement operator and its inverse

• R : IRpq×pq → IRp2×q2
is the rearrangement operator

R(D) =

 (vecD1:q,1:q)T

...
(vecD(p−1)q:pq,(p−1)q:pq)T


• R−1 : IRp2×q2 → IRpq×pq is the operator inverse of R

R−1(R(D)) = D
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Illustration of permutation operator
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Permuted Rank Least Squares (PRLS)

Consider the nuclear norm PLS optimization

R̂ = aminR{‖R(Sn)− R‖2
F + β‖R‖∗}

The minimization is over R ∈ IRp2×q2
and we define the PRLS

Kronecker sum approximation to Sn as Σ̂ = R−1(R̂).

Theorem (Tsiligkaridis-H 2013)

The PRLS Kronecker sum approximation is

Σ̂ = R−1
(

R̂
)
, R̂ =

min(p2,q2)∑
i=1

(
σi −

β

2

)
+

uiv
T
i

• (σk ,uk , vk) is the k-th component of the SVD of R(Sn)
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PRLS Kronecker sum decomposition properties

Permuted-rank least squares (PRLS) algorithm produces a solution

Σ̂ = R−1(R̂)

that satisfies the following properties (Tsiligkaridis-H 2013).

PRLS solution of separation rank r is

• a positive definite matrix (w.p.1) if n ≥ pq

• a symmetric matrix: Σ̂T = Σ̂

• a Kronecker sum: Σ̂ =
∑r

γ=1 α̂i Âi
⊗

B̂i

PRLS solution of separation rank r is not

• a solution of algebraic rank r

• an orthonormal basis decomposition:
tr{(Âi

⊗
B̂i )(Âj

⊗
B̂j)} 6= δi−j
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MSE convergence rates

Theorem (Tsiligkaridis-H 2013)

Assume Sn ∈ IRpq×pq is p.d and let M = max(p, q, n). Let λ
satisfy

λ = C (p2 + q2 + log(M))/n

Then, with probability at least 1− 2M−1/4C the matched PRLS
estimator Σ̂p.q.r of Σ satisfies:

‖Σ̂p.q.r −Σ‖2
F ≤ min

R:rank(R)≤r
‖R−R(Σ)‖2

F

+C ‘
(
r(p2 + q2 + log(M))/n

)
where C ‘ = (1.5(1 +

√
2)C )2.

Proof: largely inspired by Lounici 2012.
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Simulation: Block Toeplitz covariance

Step 1 : Generate vector AR(1) process zt ∈ IRp

zt = Φzt−1 + Et , t = 1, 2, . . .

Step 2 : Concatenate AR(1) vectors into Zt ∈ IRpq

Zt = [zTp+m, z
T
p+2m, . . . , z

T
p+qm]T

p = q = 25, ‖Φ‖2 = 0.95.
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Simulation: Block Toeplitz covariance

NB: For n = 108, PRLS with rank r = 3 achieves 6.9dB MSE
reduction
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Application: National Center for Environmental Prediction
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Application: National Center for Environmental Prediction

Lat (90-67.5) and long (0-22.5) is over 2.5 degree increments
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Application: National Center for Environmental Prediction

• Kronecker spectrum (left) significantly more concentrated than
eigenspectrum (right)
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Application: National Center for Environmental Prediction

When use PRLS for prediction get higher prediction accuracy

• SCM:
• Σ̂ = Sn is rank deficient
• Prediction by min-norm (Moore-Penrose inverse) linear

regression
• PRLS

• Σ̂ for PRLS is full rank
• Prediction by standard linear regression
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Conclusion

• Kronecker product covariance models are scalable.

• Significant advantages in MSE convergence rate and phase
transition behavior

• These rates guide scaling of regularization parameters λ

• Good match to certain experimental data streams
• wind speed network prediction
• activity recognition
• video classification

• Open problems
• Missing data
• MLE for Kronecker sum models
• Relation between separation rank and algebraic rank
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