Matthieu Saumard

ATER au CNAM

Séminaire CNAM 18-11-2016

1 Improving predictions of stellar parameters

- 2 Causality with functional data
- 3 Bibliography

Limproving predictions of stellar parameters

Outline

1 Improving predictions of stellar parameters

- 2 Causality with functional data
- 3 Bibliography

Limproving predictions of stellar parameters

- This first part of the talk is already published.
- This is a joint work with Robbiano, S. and Curé, M. [4].

Limproving predictions of stellar parameters

Problem

(Astrophysicist) Goal : determine the temperature (T) and the radius of a star (R)

Popular method

• Create a physic model depending of T and R to build spectrum

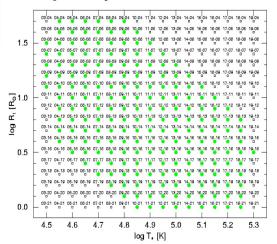
・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Generate a grid of simulated spectrum
- Compute the closest spectrum of the grid to the real data
- Say that they have the same T and R

Improving predictions of stellar parameters

Grid

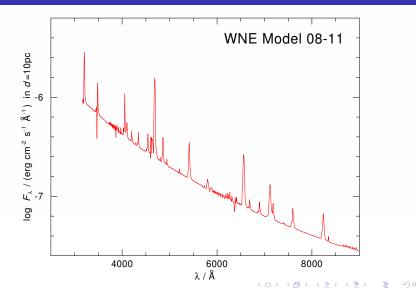
WNE grid: . = existing models



▲ロト ▲御 ▶ ▲ 思 ▶ ▲ 思 ▶ … 思 … 釣ぬ()

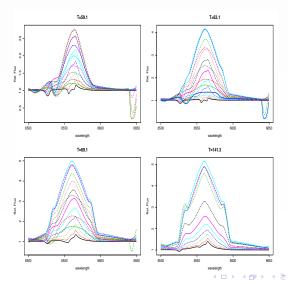
Limproving predictions of stellar parameters

Example



Improving predictions of stellar parameters

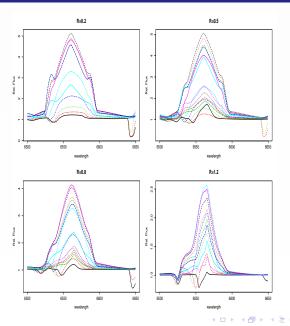
Data



200

æ

└─ Improving predictions of stellar parameters



Two applications of functional data — Improving predictions of stellar parameters

Functional linear model

Functional Model

Functional linear model

$$Y = \alpha_1 + \langle \beta, X \rangle + \varepsilon \tag{1.1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Approximation of X

$$X(t) = \sum_{k=1}^{p} x_k \rho_k(t) + r_p,$$

where $x_k = \int_K X(t)\rho_k(t)dt$ and r_p is an error. Approximation of β

$$\beta(t) = \sum_{k=1}^{p} b_k \rho_k(t) + r b_p$$

Limproving predictions of stellar parameters

Functional linear model

Functional Model multi-lines

$$\begin{cases} Y_i^{(1)} = \alpha_1 + \sum_{j=1}^M \langle \beta_{1,j}, X_{i,j} \rangle + \varepsilon_i \\ Y_i^{(2)} = \alpha_2 + \sum_{j=1}^M \langle \beta_{2,j}, X_{i,j} \rangle + \varepsilon_i' \end{cases}$$
(1.3)

$$X_{i,j} = \sum_{k=1}^{p} x_{ijk} \rho_k^j + r_{ijp},$$

where $x_{ijk} = \int_K X_{i,j}(t) \rho_k^j(t) dt$ and r_{ijp} is an error. We decompose the parameters $\beta_{1,j}$ and $\beta_{2,j}$ in the same basis with the same notation. Then, we have

$$\begin{cases} Y_{i}^{(1)} = \alpha_{1} + \sum_{j=1}^{M} \sum_{k=1}^{p} \beta_{1jk} x_{ijk} + \epsilon_{i} \\ Y_{i}^{(2)} = \alpha_{2} + \sum_{j=1}^{M} \sum_{k=1}^{p} \beta_{2jk} x_{ijk} + \epsilon_{i}^{\prime}. \end{cases}$$
(1.4)

Limproving predictions of stellar parameters

Functional linear model

If we note X_j the matrix $(x_{ijk})_{i=1...n,k=1,...,p}$ we have

$$\begin{cases} \mathbf{Y}^{(1)} = \alpha_1 + \sum_{j=1}^M \mathbf{X}_j \beta_{1,j} + \epsilon_i \\ \mathbf{Y}^{(2)} = \alpha_2 + \sum_{j=1}^M \mathbf{X}_j \beta_{2,j} + \epsilon'_i. \end{cases}$$
(1.5)

Limproving predictions of stellar parameters

Functional linear model

Prediction Methods

• Problem : Ordinary least squares estimator is very unstable

- Robust linear regression
- Ridge regression

- Improving predictions of stellar parameters
 - Functional linear model

• Nonparametrics methods namely Ferraty et Vieu [1]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Lasso
- Elastic net

Improving predictions of stellar parameters

Functional linear model

Evaluation of the prediction

$$\left(\begin{array}{c} \widehat{Y^{(1)}} = \widehat{\alpha}_1 + \sum_{j=1}^{M} \langle \widehat{\beta}_{1,j}, x_j \rangle \\ \widehat{Y^{(2)}} = \widehat{\alpha}_2 + \sum_{j=1}^{M} \langle \widehat{\beta}_{2,j}, x_j \rangle \end{array}\right)$$

$$RMSE(\beta_l) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} |Y_i^{(l)} - \hat{Y}_i^{(l)}|^2}$$

$$\Gamma ME(\beta) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(Y_i - \hat{Y}_i, Y_i - \hat{Y}_i)_{\Gamma}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Improving predictions of stellar parameters
 - Functional linear model

Prediction procedure

- We split the database in 5 parts of equal size.
- We use 3 parts (the learning set) to compute the parameter β_1^p and β_2^p for several parameter p (in practice we choose p = 1 + 4k for k = 1, ..., 10).
- We choose the parameter *p* that minimize the mean Γ error on the validation.
- We evaluate the prediction accuracy of our method on the last part of the data set (testing set).

Two applications of functional data └─Improving predictions of stellar parameters └─Prediction intervals

- **1** (Input.) A training dataset $\mathcal{D} = (\mathbf{X}, \mathbf{Y})$ of size *n*, \mathcal{A} a prediction algorithm, X_f an observation.
- 2 (Estimation) Compute $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta}$ using \mathcal{D} and \mathcal{A} . Set $\hat{r} = (\hat{r_1}, \dots, \hat{r_n}) = \mathbf{Y} \hat{\mathbf{Y}}$ the residues.
- 3 (Iterations.) For $t = 1, \ldots, T$,
 - (Sample.) Draw with replacement form r̂ a sample
 r^{*} = (r₁^{*},..., r_n^{*}) and r_f^{*}. Create D^{*} = (X, Y^{*}) where
 Y^{*} = Xβ̂ + r^{*}
 (Learning.) Use A and D^{*} to compute β̂^{*}. Keep
 B^{*}_t = X_fβ̂ X_fβ̂^{*} + r_t^{*}.
- 4 (Output) A prediction interval $\tilde{l} = [X_f \hat{\beta} + q^*; X_f \hat{\beta} + Q^*]$ where q^* (resp. Q^*) is the empirical quantile at level $\alpha/2$ (resp. $1 \alpha/2$) of $B^* = (B_1^*, \dots, B_T^*)$.

Improving predictions of stellar parameters

Results

Results

Table: Comparison of methods with Fourier decomposition : prediction.

		LM		Robu	st LM	Ridge	
	Astro	Brut	Norm	Brut	Norm	Brut	Norm
$Y^{(1)}$	0.111	0.088	0.068	0.062	0.060	0.080	0.066
Y ⁽²⁾	0.143	0.089	0.071	0.060	0.066	0.075	0.081
Шг	0.437	0.280	0.211	0.189	0.189	0.231	0.233
Nbase	_	7	5	7	7	7	7

Improving predictions of stellar parameters

Results

Results

Table: Comparison of methods with spline decomposition : prediction.

		LM		Robu	st LM	Ridge	
	Astro	Brut	Norm	Brut	Norm	Brut	Norm
$Y^{(1)}$		0.119	0.116	0.116	0.120	0.079	0.060
Y ⁽²⁾	0.143	0.102	0.102	0.096	0.112	0.075	0.067
г	0.437	0.322	0.315	0.302	0.317	0.235	0.200
Nbase	_	5	5	5	5	21	13

 \square Improving predictions of stellar parameters

Results

Table: Comparison of methods with Fourier decomposition : coverage probabilities at 95 % .

		LM		Robust LM		Ridge	
	Astro	Brut	Norm	Brut	Norm	Brut	Norm
Coverage Y ⁽¹⁾	0.871	0.918	0.896	0.908	0.919	0.944	0.957
Coverage Y ⁽²⁾	0.910	0.941	0.966	0.915	0.916	0.951	0.970

Improving predictions of stellar parameters

Results

Table: Comparison of methods with spline decomposition : coverage probabilities at 95 % .

		LM		Robust LM		Ridge	
	Astro	Brut	Norm	Brut	Norm	Brut	Norm
Coverage Y ⁽¹⁾	0.871	0.923	0.919	0.928	0.909	0.986	0.980
Coverage Y ⁽²⁾	0.910	0.949	0.946	0.919	0.885	0.986	0.986

Causality with functional data

Outline

1 Improving predictions of stellar parameters

2 Causality with functional data

3 Bibliography

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Causality with functional data

• This second part is a joint work with Raissi, H.

Causality with functional data

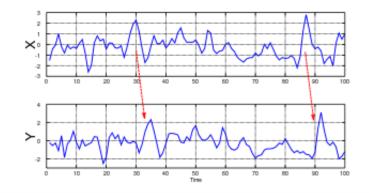


Figure: An example of causality with two time series. Ref : Wikipedia

・ロト ・ 理ト ・ モト ・ モト

- 31

Causality with functional data

Two principles

Granger [2] in 1969 propose the following definition for causality of two time series based on two principles :

- 1 The cause happens prior to its effect.
- 2 The cause has unique information about the future values of its effect.

As a consequence, the consideration of the cause allows to improve the prediction of the effect.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Mathematical definition

- Let $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ be two time series.
- Let $A_t = \{Z_{k,t}, k \in I\}$, $I \subset \mathbb{Z}$, $\{X_t, Y_t\} \subseteq A_t$.
- Definitions : $\bar{X}_t = \{X_s, s \le t\}$, $\bar{Y}_t = \{Y_s, s \le t\}$, $\bar{A}_t = \bigcup_{s \le t} A_s$.

Let *B* an information set and $\mathbb{P}(Y_t|B)$ the best linear predictor,

$$\varepsilon(Y_t|B) = Y_t - \mathbb{P}(Y_t|B), \qquad (2.6)$$

$$\sigma^{2}(Y_{t}|B) = \mathbb{E}\left[\varepsilon(Y_{t}|B)^{2}\right].$$
(2.7)

ション ふゆ く 山 マ ふ し く し く し く し く

Causality with functional data

Mathematical definition

Definition (Granger, 1969)

The variable X causes the variable Y iff for at least one value of t:

 $\sigma^{2}(Y_{t+1}|\bar{A}_{t}) < \sigma^{2}(Y_{t+1}|\bar{A}_{t} \setminus \{\bar{X}_{t}\}).$ (2.8)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

One Example

With an autoregressive model, we have that :

$$Y_t = \alpha + \sum_{k=1}^{K} \gamma_k Y_{t-k} + \sum_{k=1}^{L} \beta_k X_{t-k} + \epsilon_t$$

the variable X does not cause the variable Y iff

$$\beta_k = 0, \quad \forall k = 1, \ldots, L.$$

Causality with functional data

Operator of covariance

$$\forall u \in L^2([0,1]), \, \Gamma u = \mathbb{E}\left(\langle X_i - \mathbb{E}(X_i), u \rangle (X_i - \mathbb{E}(X_i))\right).$$
(2.9)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definition (Causality)

We say that Y is causing X if $\Gamma_{\varepsilon(X|\overline{U-Y})} - \Gamma_{\varepsilon(X|U)}$ is a positive definite operator.

Causality with functional data

The model

$$\begin{cases} X_t = \rho_{11}(X_{t-1}) + \rho_{12}(Y_{t-1}) + \varepsilon_{1t}, \\ Y_t = \rho_{21}(X_{t-1}) + \rho_{22}(Y_{t-1}) + \varepsilon_{2t}, \end{cases}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

where $\varepsilon_1, \varepsilon_2$ are errors and the $\rho_{..}$ are operators.

The null hypothesis

The test we want to perform is then

 $H_0: \ \rho_{12} = 0, \tag{2.10}$

・ロト (母) (日) (日) (日) (0) (0)

against the alternative

 $H_1: \rho_{12} \neq 0.$

Causality with functional data

- Data X and Y
- 2 Estimation of the parameters ρ
- 3 Estimation of the errors ε
- 4 Test the equality of operators based on the errors

Zhang and Shao (2015) [5] recently have proposed :

• a test procedure to compare the covariance operators of two mean zero stationary functional time series.

The null hypothesis is

$$H_0: \ \Gamma_X = \Gamma_Y, \tag{2.11}$$

ション ふゆ アメリア メリア しょうめん

against the alternative

 $H_1: \Gamma_X \neq \Gamma_Y,$

Causality with functional data

Define $\{\hat{\lambda}_{XY}^{j}\}$ and $\{\hat{\phi}_{XY}^{j}\}$ the eigenvalues and eigenfunctions of

$$\hat{\mathsf{\Gamma}}_{XY} = rac{1}{2N} \left(\sum_{i=1}^{N} X_i \otimes X_i + Y_i \otimes Y_i
ight).$$

Let $\hat{\Gamma}_{X,m} = 1/m \sum_{i=1}^{m} X_i \otimes X_i$. Let $\{\hat{\lambda}_{X,m}^j\}$ and $\{\hat{\phi}_{X,m}^j\}$ be the eigenvalues and eigenfunctions of $\hat{\Gamma}_{X,m}$. Similar quantities are defined for the second sample.

ション ふゆ くりょう かんしょう

Let K be a fixed user-chosen number and

$$c_k^{i,j} = \langle (\hat{\Gamma}_{X,\lfloor k/2 \rfloor} - \hat{\Gamma}_{Y,\lfloor k/2 \rfloor}) (\hat{\phi}_{XY}^i), \hat{\phi}_{XY}^j \rangle, \quad 2 \leq k \leq 2N, \ 1 \leq i,j \leq K.$$

Denote by $\hat{\alpha}_k = \text{vech}(C_k)$, with $C_k = (c_k^{i,j})_{i,j=1}^K$. To take the dependence into account, they introduce a self-normalized matrix :

$$V = \frac{1}{4N^2} \sum_{k=1}^{2N} k^2 (\hat{\alpha}_k - \hat{\alpha}_{2N}) (\hat{\alpha}_k - \hat{\alpha}_{2N})'.$$

The test statistic is then

 $G = 2N\hat{\alpha}_{2N}'V^{-1}\hat{\alpha}_{2N}.$

Causality with functional data

Define :

- *B_q(r)* as a *q*-dimensional vector of independent Brownian motion
- $W_q = B'_q(1)J_q^{-1}B_q(1)$, where

$$J_q = \int_0^1 (B_q(r) - rB_q(1))(B_q(r) - rB_q(1))' dr.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The critical values of W_q have been tabulated by Lobato (2001) [3].

Bibliography

Outline

1 Improving predictions of stellar parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2 Causality with functional data

3 Bibliography

Bibliography

Frédéric Ferraty and Philippe Vieu.

Nonparametric functional data analysis : theory and practice. Springer, 2006.

C. W. J. Granger.

Investigating causal relations by econometric models and cross-spectral methods.

Econometrica, 37(3) :pp. 424-438, 1969.

Ignacio N Lobato.

Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 96(455) :1066–1076, 2001.

S. Robbiano, M. Saumard, and M. Curé. Improving prediction performance of stellar parameters using functional models.

Journal of applied statistics, To appear.

\square Bibliography

Xianyang Zhang and Xiaofeng Shao.

Two sample inference for the second-order property of temporally dependent functional data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bernoulli, 21(2) :909-929, 2015.