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Two applications of functional data

Improving predictions of stellar parameters

This first part of the talk is already published.
This is a joint work with Robbiano, S. and Curé, M. [4].
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Improving predictions of stellar parameters

Problem

(Astrophysicist) Goal : determine the temperature (T) and the
radius of a star (R)

Popular method

Create a physic model depending of T and R to build spectrum

Generate a grid of simulated spectrum

Compute the closest spectrum of the grid to the real data

Say that they have the same T and R
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Grid
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Example

WNE Model 08-11
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Improving predictions of stellar parameters

Data
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Improving predictions of stellar parameters

Functional linear model

Functional Model

Functional linear model

Y = α1 + 〈β,X 〉+ ε (1.1)

Approximation of X

X (t) =

p∑
k=1

xkρk(t) + rp,

where xk =
∫
K X (t)ρk(t)dt and rp is an error.

Approximation of β

β(t) =

p∑
k=1

bkρk(t) + rbp

Y = α +

p∑
k=1

βkxk + ε (1.2)
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Functional linear model

Functional Model multi-lines

{
Y

(1)
i = α1 +

∑M
j=1〈β1,j ,Xi ,j〉+ εi

Y
(2)
i = α2 +

∑M
j=1〈β2,j ,Xi ,j〉+ ε′i

(1.3)

Xi ,j =

p∑
k=1

xijkρ
j
k + rijp,

where xijk =
∫
K Xi ,j(t)ρjk(t)dt and rijp is an error. We decompose

the parameters β1,j and β2,j in the same basis with the same
notation. Then, we have{

Y
(1)
i = α1 +

∑M
j=1
∑p

k=1 β1jkxijk + εi

Y
(2)
i = α2 +

∑M
j=1
∑p

k=1 β2jkxijk + ε′i .
(1.4)
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Functional linear model

If we note Xj the matrix (xijk)i=1...n,k=1,...,p we have{
Y (1) = α1 +

∑M
j=1 Xjβ1,j + εi

Y (2) = α2 +
∑M

j=1 Xjβ2,j + ε′i .
(1.5)
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Functional linear model

Prediction Methods

Problem : Ordinary least squares estimator is very unstable
Robust linear regression
Ridge regression
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Functional linear model

Others models

Nonparametrics methods namely Ferraty et Vieu [1]
Lasso
Elastic net
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Improving predictions of stellar parameters

Functional linear model

Evaluation of the prediction

{
Ŷ (1) = α̂1 +

∑M
j=1〈β̂1,j , xj〉

Ŷ (2) = α̂2 +
∑M

j=1〈β̂2,j , xj〉

RMSE (βl) =

√√√√1
n

n∑
i=1

|Y (l)
i − Ŷ

(l)
i |2.

ΓME (β) =

√√√√1
n

n∑
i=1

(Yi − Ŷi ,Yi − Ŷi )Γ.
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Functional linear model

Prediction procedure

We split the database in 5 parts of equal size.

We use 3 parts (the learning set) to compute the parameter
βp1 and βp2 for several parameter p (in practice we choose
p = 1 + 4k for k = 1, . . . , 10).

We choose the parameter p that minimize the mean Γ error on
the validation.

We evaluate the prediction accuracy of our method on the last
part of the data set (testing set).
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Improving predictions of stellar parameters

Prediction intervals

1 (Input.) A training dataset D = (X,Y ) of size n, A a prediction
algorithm, Xf an observation.

2 (Estimation) Compute Ŷ = Xβ̂ using D and A. Set
r̂ = (r̂1, . . . , r̂n) = Y − Ŷ the residues.

3 (Iterations.) For t = 1, . . . ,T ,

1 (Sample.) Draw with replacement form r̂ a sample
r∗ = (r∗1 , . . . , r

∗
n ) and r∗f . Create D∗ = (X,Y ∗) where

Y ∗ = Xβ̂ + r∗

2 (Learning.) Use A and D∗ to compute β̂∗. Keep
B∗
t = Xf β̂ − Xf β̂

∗ + r∗f .

4 (Output) A prediction interval Ĩ = [Xf β̂ + q∗;Xf β̂ + Q∗] where q∗

(resp. Q∗) is the empirical quantile at level α/2 (resp. 1− α/2) of
B∗ = (B∗

1 , . . . ,B
∗
T ).
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Improving predictions of stellar parameters

Results

Results

Table: Comparison of methods with Fourier decomposition : prediction.

LM Robust LM Ridge
Astro Brut Norm Brut Norm Brut Norm

Y (1) 0.171 0.088 0.068 0.062 0.060 0.080 0.066
Y (2) 0.143 0.089 0.071 0.060 0.066 0.075 0.081
‖‖Γ 0.437 0.280 0.211 0.189 0.189 0.231 0.233

Nbase – 7 5 7 7 7 7
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Results

Results

Table: Comparison of methods with spline decomposition : prediction.

LM Robust LM Ridge
Astro Brut Norm Brut Norm Brut Norm

Y (1) 0.171 0.119 0.116 0.116 0.120 0.079 0.060
Y (2) 0.143 0.102 0.102 0.096 0.112 0.075 0.067
‖‖Γ 0.437 0.322 0.315 0.302 0.317 0.235 0.200
Nbase – 5 5 5 5 21 13
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Improving predictions of stellar parameters

Results

Table: Comparison of methods with Fourier decomposition : coverage
probabilities at 95 % .

LM Robust LM Ridge
Astro Brut Norm Brut Norm Brut Norm

Coverage Y (1) 0.871 0.918 0.896 0.908 0.919 0.944 0.957
Coverage Y (2) 0.910 0.941 0.966 0.915 0.916 0.951 0.970
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Improving predictions of stellar parameters

Results

Table: Comparison of methods with spline decomposition : coverage
probabilities at 95 % .

LM Robust LM Ridge
Astro Brut Norm Brut Norm Brut Norm

Coverage Y (1) 0.871 0.923 0.919 0.928 0.909 0.986 0.980
Coverage Y (2) 0.910 0.949 0.946 0.919 0.885 0.986 0.986
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Causality with functional data

This second part is a joint work with Raissi, H.
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Causality with functional data

Figure: An example of causality with two time series. Ref : Wikipedia
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Causality with functional data

Two principles

Granger [2] in 1969 propose the following definition for causality of
two time series based on two principles :

1 The cause happens prior to its effect.
2 The cause has unique information about the future values of

its effect.
As a consequence, the consideration of the cause allows to improve
the prediction of the effect.
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Causality with functional data

Mathematical definition

Let {Xt , t ∈ Z} and {Yt , t ∈ Z} be two time series.
Let At = {Zk,t , k ∈ I}, I ⊂ Z, {Xt ,Yt} ⊆ At .
Definitions : X̄t = {Xs , s ≤ t}, Ȳt = {Ys , s ≤ t},
Āt =

⋃
s≤t As .

Let B an information set and P(Yt |B) the best linear predictor,

ε(Yt |B) = Yt − P(Yt |B), (2.6)

σ2(Yt |B) = E
[
ε(Yt |B)2] . (2.7)
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Causality with functional data

Mathematical definition

Definition (Granger, 1969)

The variable X causes the variable Y iff for at least one value of t :

σ2(Yt+1|Āt) < σ2(Yt+1|Āt \ {X̄t}). (2.8)
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Causality with functional data

One Example

With an autoregressive model, we have that :

Yt = α +
K∑

k=1

γkYt−k +
L∑

k=1

βkXt−k + εt

the variable X does not cause the variable Y iff

βk = 0, ∀k = 1, . . . , L.
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Causality with functional data

Operator of covariance

∀u ∈ L2([0, 1]), Γu = E (〈Xi − E(Xi ), u〉(Xi − E(Xi ))) . (2.9)

Definition (Causality)

We say that Y is causing X if Γε(X |U−Y ) − Γε(X |U) is a positive
definite operator.
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Causality with functional data

The model

{
Xt = ρ11(Xt−1) + ρ12(Yt−1) + ε1t ,
Yt = ρ21(Xt−1) + ρ22(Yt−1) + ε2t ,

where ε1, ε2 are errors and the ρ.. are operators.
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Causality with functional data

The null hypothesis

The test we want to perform is then

H0 : ρ12 = 0, (2.10)

against the alternative

H1 : ρ12 6= 0.
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Causality with functional data

1 Data X and Y

2 Estimation of the parameters ρ

3 Estimation of the errors ε

4 Test the equality of operators based on the errors
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Causality with functional data

Zhang and Shao (2015) [5] recently have proposed :
a test procedure to compare the covariance operators of two
mean zero stationary functional time series.

The null hypothesis is

H0 : ΓX = ΓY , (2.11)

against the alternative

H1 : ΓX 6= ΓY ,
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Causality with functional data

Define {λ̂jXY } and {φ̂
j
XY } the eigenvalues and eigenfunctions of

Γ̂XY =
1
2N

(
N∑
i=1

Xi ⊗ Xi + Yi ⊗ Yi

)
.

Let Γ̂X ,m = 1/m
∑m

i=1 Xi ⊗ Xi . Let {λ̂jX ,m} and {φ̂
j
X ,m} be the

eigenvalues and eigenfunctions of Γ̂X ,m. Similar quantities are
defined for the second sample.
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Causality with functional data

Let K be a fixed user-chosen number and

c i ,jk = 〈(Γ̂X ,bk/2c−Γ̂Y ,bk/2c)(φ̂iXY ), φ̂jXY 〉, 2 ≤ k ≤ 2N, 1 ≤ i , j ≤ K .

Denote by α̂k = vech(Ck), with Ck = (c i ,jk )Ki ,j=1. To take the
dependence into account, they introduce a self-normalized matrix :

V =
1

4N2

2N∑
k=1

k2(α̂k − α̂2N)(α̂k − α̂2N)′.

The test statistic is then

G = 2Nα̂′2NV
−1α̂2N .
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Causality with functional data

Define :
Bq(r) as a q-dimensional vector of independent Brownian
motion
Wq = B ′q(1)J−1

q Bq(1), where

Jq =

∫ 1

0
(Bq(r)− rBq(1))(Bq(r)− rBq(1))′dr .

The critical values of Wq have been tabulated by Lobato
(2001) [3].
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