Space-time domain decomposition methods for mixed formulations for flow and transport in porous media

Caroline Japhet
Co-authors: Thi-Thao-Phuong Hoang, Jérôme Jaffré, Michel Kern and Jean E. Roberts

Université Paris 13 & INRIA Paris-Rocquencourt
work supported by Andra

Journée DDM - parallélisation, jeudi 11 juin 2015
Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:
Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

- porous media around underground nuclear waste deposit sites
Heterogeneities mean difficulties for simulation

Deep underground repository
(High-level waste)

A repository 2km × 2km
Heterogeneities mean difficulties for simulation

Deep underground repository
(High-level waste)

Different materials → strong heterogeneity, different time scales.

Large differences in spatial scales.

Long-term computations.

A repository 2km × 2km
Introduction

Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

- porous media around underground nuclear waste deposit sites
Objective: to formulate numerical methods for flow and transport in heterogeneous porous media

Examples of heterogeneous media:

- porous media around underground nuclear waste deposit sites
- porous media with fractures
Difficulty for modeling flow in media with fractures

A problem requiring multi-scale modelling
Difficulty for modeling flow in media with fractures

A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
- Usually of much higher permeability than surrounding medium
- May be of much lower permeability so that they act as a barrier

Fracture width much smaller than any reasonable parameter of spatial discretization.
Difficulty for modeling flow in media with fractures

A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
 - Usually of much higher permeability than surrounding medium
 - May be of much lower permeability so that they act as a barrier
- Fracture width much smaller than any reasonable parameter of spatial discretization.
Difficulty for modeling flow in media with fractures

A problem requiring multi-scale modelling

- Fractures represent heterogeneities in porous media
 - Usually of much higher permeability than surrounding medium
 - May be of much lower permeability so that they act as a barrier
- Fracture width much smaller than any reasonable parameter of spatial discretization.

Different types of models for flow in fractures

- double continuum models.
- discrete fracture networks (DFN’s) (no exchange with surrounding matrix rock)
- reduced fracture models (with exchange with matrix rock)
Introduction

Objective here: to formulate methods for subdomain time-stepping

More specifically:

- to develop and compare two different space-time (global in time) domain decomposition methods for the linear transport problem in mixed formulation.

- to extend these methods to the case of a domain with a discrete fracture
Domain decomposition (DD) methods

Domain decomposition in space

Discretize in time and apply DD algorithm at each time step:

▶ Solve stationary problems in the subdomains
▶ Exchange information through the interface
Use the same time step on the whole domain.

Space-time domain decomposition

Solve time-dependent problems in the subdomains
Exchange information through the space-time interface
Enable local discretizations both in space and in time
→ local time stepping
Domain decomposition (DD) methods

Domain decomposition in space

Discretize in time and apply DD algorithm at each time step:
- Solve stationary problems in the subdomains
- Exchange information through the interface
- Use the same time step on the whole domain.

Space-time domain decomposition
- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time → local time stepping

Caroline Japhet (Paris13)
Domain decomposition (DD) methods

Domain decomposition in space

Discretize in time and apply DD algorithm at each time step:

▶ Solve stationary problems in the subdomains
▶ Exchange information through the interface
Use the same time step on the whole domain.

Space-time domain decomposition

Solve time-dependent problems in the subdomains
Exchange information through the space-time interface
Enable local discretizations both in space and in time
→ local time stepping

Caroline Japhet (Paris13)
Domain decomposition (DD) methods

Domain decomposition in space

Discretize in time and apply DD algorithm at each time step:

- Solve stationary problems in the subdomains
- Exchange information through the interface

Use the same time step on the whole domain.
Domain decomposition (DD) methods

Domain decomposition in space

Discretize in time and apply DD algorithm at each time step:

- Solve stationary problems in the subdomains
- Exchange information through the interface

Use the same time step on the whole domain.

Space-time domain decomposition

Solve time-dependent problems in the subdomains
Exchange information through the space-time interface
Enable local discretizations both in space and in time — local time stepping

Caroline Japhet (Paris13)
Domain decomposition (DD) methods

Domain decomposition in space

- Discretize in time and apply DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Use the same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 → local time stepping
Domain decomposition (DD) methods

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 → local time stepping
Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 \[\rightarrow\text{local time stepping}\]
Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 \[\rightarrow\] local time stepping
Domain decomposition (DD) methods

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface
- Enable local discretizations both in space and in time
 → local time stepping

Space-time DD with Time windows

- Perform few iterations per window
- Use different space-time grids in each window
- Use the solution in the previous window to calculate a “good” initial guess on the interface.
Domain decomposition (DD) methods

Space-time domain decomposition

- Solve *time-dependent* problems in the subdomains
- Exchange information through the *space-time interface*
- Enable local discretizations both in space and in time
 \[\rightarrow\] local time stepping

Space-time DD with Time windows

- Perform few iterations per window
- Use different space-time grids in each window
- Use the solution in the previous window to calculate a "good" initial guess on the interface.
Objectives of the work

Space-time domain decomposition methods with mixed formulations
Objectives of the work

Space-time domain decomposition methods with mixed formulations

- **Global-in-time preconditioned Schur (GTP Schur):** using the Steklov-Poincaré operator
 - *Elliptic problems:* Agoshkov (87), Widlund (87), Destuynder-Roux (88), Bjørstad-Brækhus-Hvidsten (90), Quarteroni-Valli (91);
 - *Neumann-Neumann preconditioners:* Pasciak (88), Bourgat-Glowinski-Le Tallec-Vidrascu (89), De Roeck-Le Tallec (91);
 - *Balancing domain decomposition:* Mandel (93), Mandel-Brezina (96).

- **Parabolic problems:** Dryja (91), Gastaldi (94).

→ Time-dependent Steklov-Poincaré operators + mixed methods
Objectives of the work

Space-time domain decomposition methods with mixed formulations

- **Global-in-time preconditioned Schur (GTP Schur): using the Steklov-Poincaré operator**
 - *Elliptic problems*: Agoshkov (87), Widlund (87), Destuynder-Roux (88), Bjørstad-Brækhus-Hvidsten (90), Quarteroni-Valli (91);
 - *Neumann-Neumann preconditioners*: Pasciak (88), Bourgat-Glowinski-Le Tallec-Vidrascu (89), De Roeck-Le Tallec (91);
 - *Balancing domain decomposition*: Mandel (93), Mandel-Brezina (96).

- **Global-in-time optimized Schwarz (GTO Schwarz): using optimized Schwarz waveform relaxation (OSWR)**
 - *Optimized Schwarz methods*: CJ (98), CJ-Nataf-Rogier (01), Gander (06).
 - *OSWR methods*: Gander-Halpern-Nataf (99), Martin (05), Bennequin-Gander-Halpern (09)
 - *Non-conforming time grids (FEM or FVM)*: Gander-Halpern-Nataf (03), Gander-Halpern-Kern (07), Blayo-Halpern-CJ (07), Halpern-CJ-Szeftel (10), Haeblerlein (11), Hoang (13), Berthe (13).

→ Time-dependent Steklov-Poincaré operators + mixed methods

→ Extension to mixed FEM: Robin and Ventcell transmission conditions
OUTLINE

1. Introduction

2. Pure diffusion problems
 - Multi-domain mixed formulations
 - Nonconforming discretizations in time

3. Advection-diffusion problems
 - Operator splitting
 - Numerical results

4. Extension to reduced fracture models
Transport of a contaminant in a porous medium under the effect of diffusion, written in mixed form:

\[
\begin{align*}
\mathcal{L}(c, r) &:= \phi \frac{\partial c}{\partial t} + \text{div } r = f \quad \text{in } \Omega \times (0, T), \\
\mathcal{M}(c, r) &:= D^{-1}r + \nabla c = 0 \quad \text{in } \Omega \times (0, T), \\
\quad c &= 0 \quad \text{on } \partial \Omega \times (0, T), \\
\quad c(\cdot, 0) &= c_0 \quad \text{in } \Omega,
\end{align*}
\]

- c concentration of a contaminant dissolved in a fluid, r diffusive flux.
- ϕ porosity; D symmetric, positive definite, time-independent diffusion tensor.
Multi-domain problem

Equivalent multi-domain problem:

\[
\begin{align*}
\mathcal{L}(c_1, r_1) &= f, & \text{on } \Omega_1 \times (0, T), \\
\mathcal{M}(c_1, r_1) &= 0, & \text{on } \Omega_1 \times (0, T), \\
c_1(\cdot, 0) &= c_0, & \text{in } \Omega_1,
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}(c_2, r_2) &= f, & \text{on } \Omega_2 \times (0, T), \\
\mathcal{M}(c_2, r_2) &= 0, & \text{on } \Omega_2 \times (0, T), \\
c_2(\cdot, 0) &= c_0, & \text{in } \Omega_2,
\end{align*}
\]
Multi-domain problem

Equivalent multi-domain problem:

\[\mathcal{L}(c_1, r_1) = f, \quad \text{on } \Omega_1 \times (0, T), \]
\[M(c_1, r_1) = 0, \quad \text{on } \Omega_1 \times (0, T), \]
\[c_1(\cdot, 0) = c_0, \quad \text{in } \Omega_1, \]
\[\mathcal{L}(c_2, r_2) = f, \quad \text{on } \Omega_2 \times (0, T), \]
\[M(c_2, r_2) = 0, \quad \text{on } \Omega_2 \times (0, T), \]
\[c_2(\cdot, 0) = c_0, \quad \text{in } \Omega_2, \]

Together with the transmission conditions on the **space-time interface**

\[c_1 = c_2 \quad \text{on } \Gamma \times (0, T). \]
\[r_1 \cdot n_1 + r_2 \cdot n_2 = 0 \quad \text{on } \Gamma \times (0, T). \]
An overview

Different (equivalent) transmission conditions (TC’s)

GTP Schur
- Physical TC’s
- + N-N preconditioner

GTO Schwarz
- More general TC’s with optimized parameters
 \rightarrow accelerate the convergence rate.

- Robin TC’s
- Ventcell TC’s
An overview

Different (equivalent) transmission conditions (TC’s)

↓

GTP Schur
- Physical TC’s
- + N-N preconditioner

GTO Schwarz
- More general TC’s with optimized parameters
 → accelerate the convergence rate.
 - Robin TC’s
 - Ventcell TC’s

Substructuring technique: **Space-time interface problem**
An overview

Different (equivalent) transmission conditions (TC’s)

\[\Downarrow\]

GTP Schur
- Physical TC’s
+ N-N preconditioner

GTO Schwarz
- More general TC’s with optimized parameters
 \(\rightarrow\) accelerate the convergence rate.

\[\Downarrow\]

Physical TC’s
Ventcell TC’s

Substructuring technique: \textit{Space-time interface problem}

\[\Downarrow\]

Iterative solvers (GMRES, Richardson iteration)
Time-dependent Steklov-Poincaré operator

- Dirichlet-to-Neumann operators, for $i = 1, 2$: $S_{i}^{DtN} : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma}$,

where $(c_i, r_i), \ i = 1, 2$, is the solution of

\begin{align*}
\mathcal{L}(c_i, r_i) &= f, \quad \text{on } \Omega_i \times (0, T), \\
\mathcal{M}(c_i, r_i) &= 0, \quad \text{on } \Omega_i \times (0, T), \\
c_i &= \lambda, \quad \text{on } \Gamma \times (0, T), \\
c_i(\cdot, 0) &= c_0, \quad \text{in } \Omega_i.
\end{align*}
Time-dependent Steklov-Poincaré operator

- Dirichlet-to-Neumann operators, for $i = 1, 2$:

 $$S^\text{DtN}_i : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma},$$

 where $(c_i, r_i), i = 1, 2,$ is the solution of

 $\mathcal{L}(c_i, r_i) = f, \quad \text{on } \Omega_i \times (0, T),$

 $\mathcal{M}(c_i, r_i) = 0, \quad \text{on } \Omega_i \times (0, T),$

 $c_i = \lambda, \quad \text{on } \Gamma \times (0, T),$

 $c_i(\cdot, 0) = c_0, \quad \text{in } \Omega_i.$

- Space-time interface problem:

 $$S^\text{DtN}_1(\lambda, f, c_0) + S^\text{DtN}_2(\lambda, f, c_0) = 0,$$
Time-dependent Steklov-Poincaré operator

- Dirichlet-to-Neumann operators, for $i = 1, 2$:
 \[S_{i}^{DtN} : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma}, \]
 where $(c_i, r_i), i = 1, 2,$ is the solution of
 \[
 \begin{align*}
 \mathcal{L}(c_i, r_i) &= f, & \text{on } & \Omega_i \times (0, T), \\
 \mathcal{M}(c_i, r_i) &= 0, & \text{on } & \Omega_i \times (0, T), \\
 c_i &= \lambda, & \text{on } & \Gamma \times (0, T), \\
 c_i(\cdot, 0) &= c_0, & \text{in } & \Omega_i.
 \end{align*}
 \]

- Space-time interface problem:
 \[
 S_{1}^{DtN}(\lambda, f, c_0) + S_{2}^{DtN}(\lambda, f, c_0) = 0, \\
 - \sum_{i=1}^{2} S_{i}^{DtN}(\lambda, 0, 0) = \sum_{i=1}^{2} S_{i}^{DtN}(0, f, c_0), \\
 S\lambda = \chi, \text{ on } \Gamma \times (0, T).
 \]
Time-dependent Steklov-Poincaré operator

- Dirichlet-to-Neumann operators, for \(i = 1, 2 \):
 \[
 S_{i}^{DtN} : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma},
 \]
 where \((c_i, r_i), \ i = 1, 2 \), is the solution of
 \[
 \begin{align*}
 &\mathcal{L}(c_i, r_i) = f, \quad \text{on } \Omega_i \times (0, T), \\
 &\mathcal{M}(c_i, r_i) = 0, \quad \text{on } \Omega_i \times (0, T), \\
 &c_i = \lambda, \quad \text{on } \Gamma \times (0, T), \\
 &c_i(\cdot, 0) = c_0, \quad \text{in } \Omega_i.
 \end{align*}
 \]

- Space-time interface problem:
 \[
 S_{1}^{DtN}(\lambda, f, c_0) + S_{2}^{DtN}(\lambda, f, c_0) = 0,
 \]
 \[
 \begin{align*}
 &- \sum_{i=1}^{2} S_{i}^{DtN}(\lambda, 0, 0) = \sum_{i=1}^{2} S_{i}^{DtN}(0, f, c_0), \\
 \implies & S\lambda = \chi, \quad \text{on } \Gamma \times (0, T).
 \end{align*}
 \]

- Neumann-Neumann preconditioner with weights:
 \[
 \left(\sigma_1 S_{1}^{NtD} + \sigma_2 S_{2}^{NtD}\right) S\lambda = \hat{\chi}, \quad \text{on } \Gamma \times (0, T),
 \]
 where \(\sigma_i : \Gamma \times (0, T) \rightarrow [0, 1] \) such that \(\sigma_1 + \sigma_2 = 1 \).
GTO Schwarz: Robin transmission conditions

- Equivalent Robin TC’s on $\Gamma \times (0, T)$: for $\alpha_1, \alpha_2 > 0$

\[
-r_1 \cdot n_1 + \alpha_1 c_1 = -r_2 \cdot n_1 + \alpha_1 c_2,
\]
\[
-r_2 \cdot n_2 + \alpha_2 c_2 = -r_1 \cdot n_2 + \alpha_2 c_1,
\]
GTO Schwarz: Robin transmission conditions

- Equivalent Robin TC's on $\Gamma \times (0, T)$: for $\alpha_1, \alpha_2 > 0$
 \[-r_1 \cdot n_1 + \alpha_1 c_1 = -r_2 \cdot n_1 + \alpha_1 c_2,\]
 \[-r_2 \cdot n_2 + \alpha_2 c_2 = -r_1 \cdot n_2 + \alpha_2 c_1,\]

- Robin-to-Robin operators, for $i = 1, 2$ and $j = 3 - i$:
 \[S_{i}^{RtR} : (\xi_i, f, c_0) \mapsto (-r_i \cdot n_j + \alpha_j c_i) |_{\Gamma},\]

where $(c_i, r_i), \ i = 1, 2,$ is the solution of

\[
\begin{align*}
\mathcal{L}(c_i, r_i) &= f, \quad \text{on } \Omega_i \times (0, T), \\
\mathcal{M}(c_i, r_i) &= 0, \quad \text{on } \Omega_i \times (0, T), \\
-r_i \cdot n_i + \alpha_i c_i &= \xi_i, \quad \text{on } \Gamma \times (0, T), \\
c_i(\cdot, 0) &= c_0, \quad \text{in } \Omega_i.
\end{align*}
\]
GTO Schwarz: Robin transmission conditions

- Equivalent Robin TC’s on $\Gamma \times (0, T)$: for $\alpha_1, \alpha_2 > 0$

 $$
 -r_1 \cdot n_1 + \alpha_1 c_1 = -r_2 \cdot n_1 + \alpha_1 c_2, \\
 -r_2 \cdot n_2 + \alpha_2 c_2 = -r_1 \cdot n_2 + \alpha_2 c_1,$$

- Robin-to-Robin operators, for $i = 1, 2$ and $j = 3 - i$:

 $$S_{i}^{\text{RtR}} : (\xi_i, f, c_0) \mapsto (-r_i \cdot n_j + \alpha_j c_i)_{|\Gamma},$$

 where $(c_i, r_i), \ i = 1, 2$, is the solution of

 $$\mathcal{L}(c_i, r_i) = f, \quad \text{on } \Omega_i \times (0, T),$$
 $$\mathcal{M}(c_i, r_i) = 0, \quad \text{on } \Omega_i \times (0, T),$$
 $$-r_i \cdot n_i + \alpha_i c_i = \xi_i, \quad \text{on } \Gamma \times (0, T),$$
 $$c_i(\cdot, 0) = c_0, \quad \text{in } \Omega_i.$$

- Space-time interface problem with two Lagrange multipliers:

 $$\xi_1 = S_2^{\text{RtR}}(\xi_2, f, c_0), \quad \text{on } \Gamma \times (0, T),$$
 $$\xi_2 = S_1^{\text{RtR}}(\xi_1, f, c_0),$$

 or equivalently,

 $$S_R \left(\begin{array}{c}
 \xi_1 \\
 \xi_2
 \end{array} \right) = \chi_R, \quad \text{on } \Gamma \times (0, T).$$
GTO Schwarz: Ventcell transmission conditions

With sufficient regularity → equivalent Ventcell transmission conditions

In primal form: on \(\Gamma \times (0, T) \):

\[
-\alpha_i c_i, \beta_i: \text{positive constants to be optimized to accelerate convergence rate.}
\]

In mixed form: introduce Lagrange multipliers on the interface, \(c_i, \Gamma \) and \(\tau_{\Gamma,i} \), for \(i = 1, 2 \):

\[
-\tau_i \cdot n_i + \alpha_i c_i, \Gamma + \beta_i (\varphi_j \partial_t c_i, \Gamma + \text{div} \tau_{\Gamma,i}) = -\tau_j \cdot n_i + \alpha_i c_j, \Gamma + \beta_i (\varphi_j \partial_t c_j, \Gamma + \text{div} \tau_{\Gamma,j}) - \text{div} \tau_{\Gamma,j} f_i, \Gamma = 0.
\]

\(c_i, \Gamma \): concentration trace on \(\Gamma \).

\(\tau_{\Gamma,i} \): NOT the tangential trace of \(\tau_i \) on \(\Gamma \times (0, T) \).
GTO Schwarz: Ventcell transmission conditions

With sufficient regularity \rightarrow equivalent Ventcell transmission conditions

- **In primal form:** on $\Gamma \times (0, T)$:

 $-r_1 \cdot n_1 + \alpha_1 c_1 + \quad = \quad -r_2 \cdot n_1 + \alpha_1 c_2 +$

 $-r_2 \cdot n_2 + \alpha_2 c_2 + \quad = \quad -r_1 \cdot n_2 + \alpha_2 c_1 +$
GTO Schwarz: Ventcell transmission conditions

With sufficient regularity → equivalent Ventcell transmission conditions

- In primal form: on $\Gamma \times (0, T)$:

$$-\mathbf{r}_1 \cdot \mathbf{n}_1 + \alpha_1 c_1 + \beta_1 \left(\phi_2 \partial_t c_1 + \text{div}_\tau (-\mathbf{D}_2, \Gamma \nabla_\tau c_1) \right) = -\mathbf{r}_2 \cdot \mathbf{n}_1 + \alpha_1 c_2 + \beta_1 \left(\phi_2 \partial_t c_2 + \text{div}_\tau (-\mathbf{D}_2, \Gamma \nabla_\tau c_2) \right),$$

$$-\mathbf{r}_2 \cdot \mathbf{n}_2 + \alpha_2 c_2 + \beta_2 \left(\phi_1 \partial_t c_2 + \text{div}_\tau (-\mathbf{D}_1, \Gamma \nabla_\tau c_2) \right) = -\mathbf{r}_1 \cdot \mathbf{n}_2 + \alpha_2 c_1 + \beta_2 \left(\phi_1 \partial_t c_1 + \text{div}_\tau (-\mathbf{D}_1, \Gamma \nabla_\tau c_1) \right).$$

α_i, β_i: positive constants to be optimized to accelerate convergence rate.
GTO Schwarz: Ventcell transmission conditions

With sufficient regularity → equivalent Ventcell transmission conditions

- **In primal form**: on $\Gamma \times (0, T)$:

 \[-r_1 \cdot n_1 + \alpha_1 c_1 + \beta_1 (\phi_2 \partial_t c_1 + \text{div}_\tau (-D_{2,\Gamma} \nabla \tau c_1)) = -r_2 \cdot n_1 + \alpha_1 c_2 + \beta_1 (\phi_2 \partial_t c_2 + \text{div}_\tau (-D_{2,\Gamma} \nabla \tau c_2)), \]

 \[-r_2 \cdot n_2 + \alpha_2 c_2 + \beta_2 (\phi_1 \partial_t c_2 + \text{div}_\tau (-D_{1,\Gamma} \nabla \tau c_2)) = -r_1 \cdot n_2 + \alpha_2 c_1 + \beta_2 (\phi_1 \partial_t c_1 + \text{div}_\tau (-D_{1,\Gamma} \nabla \tau c_1)). \]

 $\rightarrow \alpha_i, \ \beta_i$: positive constants to be optimized to accelerate convergence rate.

- **In mixed form**: introduce Lagrange multipliers on the interface, $c_{i,\Gamma}$ and $r_{\Gamma,i}$, for $i = 1, 2$,

 \[-r_i \cdot n_i + \alpha_i c_{i,\Gamma} + \beta_i (\phi_j \partial_t c_{i,\Gamma} + \text{div}_\tau r_{\Gamma,i}) = -r_j \cdot n_i + \alpha_i c_{j,\Gamma} + \beta_i (\phi_j \partial_t c_{j,\Gamma} + \text{div}_\tau \left(D_{j,\Gamma} D_{i,\Gamma}^{-1} r_{\Gamma,j}\right)), \]

 \[D_{j,\Gamma}^{-1} r_{\Gamma,i} + \nabla \tau c_{i,\Gamma} = 0. \]

 $c_{i,\Gamma}$: concentration trace on Γ.

 $r_{\Gamma,i} := -D_{j,\Gamma} \nabla \tau c_{i,\Gamma}$: NOT the tangential trace of r_i on $\Gamma \times (0, T)$.

Caroline Japhet (Paris13)
Space-time DD & porous media
Journée DDM - parallélisation
16 / 33
Nonconforming discretizations in time

Information on one time grid at the interface is passed to the other time grid at the interface using L_2-projections. Use an optimal projection algorithm, Gander-Japhet-Maday-Nataf (2005).

Nonconforming discretizations in time

Information on one time grid at the interface is passed to the other time grid at the interface using L^2-projections.

Information on one time grid at the interface is passed to the other time grid at the interface using L^2-projections.

Extension to advection-diffusion problems

Linear advection-diffusion equation:

\[\phi \frac{\partial c}{\partial t} + \text{div}(uc) + \text{div} r = f \quad \text{in } \Omega \times (0, T), \]
\[\nabla c + D^{-1}r = 0 \quad \text{in } \Omega \times (0, T), \]
\[c = 0 \quad \text{on } \partial \Omega \times (0, T), \]
\[c(\cdot, 0) = c_0 \quad \text{in } \Omega. \]

Operator splitting

- Advection eq.: explicit Euler + upwind, cell-centered finite volumes.
- Diffusion eq.: implicit Euler + mixed finite elements.

⇒ CFL condition: sub-time steps for the advection.

\[T = N_1 \Delta t_1 = N_2 \Delta t_2 \]
Discrete interface problems

- **GTP Schur method:**
 \[
 \tilde{S}_h \left(\begin{array}{c}
 \lambda a \\
 \lambda
 \end{array} \right) = \tilde{\chi}_h , \quad \text{on} \ \Gamma \times (0, T).
 \]

 \[\Rightarrow\] Generalized Neumann-Neumann preconditioner

- **GTO Schwarz method with Robin TCs:**
 \[
 \tilde{S}_{R,h} \left(\begin{array}{c}
 \lambda a \\
 \xi_1 \\
 \xi_2
 \end{array} \right) = \tilde{\chi}_{R,h} , \quad \text{on} \ \Gamma \times (0, T).
 \]

 \[\Rightarrow\] Optimized Robin parameters for the diffusion eq. only \\
 \[\neq\] fully implicit scheme.

Remark. \(\lambda_a \in \Lambda_h^{N \times L} \) while \(\lambda, \xi_1, \xi_2 \in \Lambda_h^N \).
A near-field simulation

Parameters of the simulation

<table>
<thead>
<tr>
<th>Material</th>
<th>Permeability (m.s(^{-1}))</th>
<th>Porosity</th>
<th>Diffusion (m(^2). s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host rock</td>
<td>(10^{-13})</td>
<td>0.06</td>
<td>(6 \times 10^{-13})</td>
</tr>
<tr>
<td>EDZ</td>
<td>(5 \times 10^{-11})</td>
<td>0.2</td>
<td>(2 \times 10^{-11})</td>
</tr>
<tr>
<td>Vitrified waste</td>
<td>(10^{-8})</td>
<td>0.1</td>
<td>(10^{-11})</td>
</tr>
</tbody>
</table>
Advection-diffusion problems

Numerical results

Advection field: Darcy flow

\[
\begin{align*}
\text{div } u &= 0 \quad \text{in } \Omega, \\
u &= -K \nabla p \quad \text{in } \Omega.
\end{align*}
\]

BCs:
Homogeneous Neumann at \(x = 0 \) and \(x = 10 \),
Dirichlet conditions with \(p = 100 \) Pa at \(y = 0 \) and \(p = 0 \) at \(y = 100 \).
Transport problem: time windows and decomposition

- Final time: $T_f = 2 \times 10^{11}$ s (≈ 20000 years)
 \longrightarrow 200 time windows with size $T = 10^9$ s.
- Decomposition into 9 subdomains.
- Nonconforming time grids:
 - Diffusion step:
 \[
 \Delta t_i = \frac{T}{500}, \quad i = 5, \\
 \Delta t_i = \frac{T}{100}, \quad i \neq 5.
 \]
 - Diffusion-dominated: $\text{Pe}_L \leq 0.0513$
 $\longrightarrow \Delta t_{a,i} = \Delta t_i$.
- Non-uniform mesh in space: uniform mesh in the repository (10 by 10), then progressively coarser with a factor of 1.05.
Performance of one time window

Convergence with GMRES

Error in c with nonconforming time grids.

Error in r with nonconforming time grids.

- Time grid 1: $\Delta t_i = T/500, \forall i$
- Time grid 2: $\Delta t_5 = T/500, \Delta t_i = T/100, i \neq 5$
- Time grid 3: $\Delta t_5 = T/100, \Delta t_i = T/500, i \neq 5$
- Time grid 4: $\Delta t_i = T/100, \forall i$
1. Introduction

2. Pure diffusion problems
 - Multi-domain mixed formulations
 - Nonconforming discretizations in time

3. Advection-diffusion problems
 - Operator splitting
 - Numerical results

4. Extension to reduced fracture models
A reduced model: interface-fracture

Martin-Jaffré-Roberts (2005)
Knabner-Roberts (2014) (Forchheimer flow)

In this work: assume that D/δ large
⇒ concentration continuity across the fracture

In the subdomains

$$
\begin{align*}
\phi_i \partial_t c_i + \text{div} \ r_i &= f_i \quad &\text{in } \Omega_i \times (0, T), \\
\ r_i &= -D_i \nabla c_i \quad &\text{in } \Omega_i \times (0, T), \\
\ c_i &= 0 \quad &\text{on } \partial \Omega_i \cap \partial \Omega \times (0, T), \quad \text{for } i = 1, 2, \\
\ c_i &= c_\gamma \quad &\text{on } \gamma \times (0, T), \\
\ c_i(\cdot, 0) &= c_{0,i} \quad &\text{in } \Omega_i,
\end{align*}
$$
A reduced model: interface-fracture

Martin-Jaffré-Roberts (2005)
Knabner-Roberts (2014) (Forchheimer flow)

In this work: assume that D/δ large
⇒ concentration continuity across the fracture

In the subdomains

$$\phi_i \partial_t c_i + \text{div} \: r_i = f_i \quad \text{in } \Omega_i \times (0, T),$$
$$r_i = -D_i \nabla c_i \quad \text{in } \Omega_i \times (0, T),$$
$$c_i = 0 \quad \text{on } \partial \Omega_i \cap \partial \Omega \times (0, T), \quad \text{for } i = 1, 2,$$
$$c_i(\cdot, 0) = c_{0,i} \quad \text{in } \Omega_i,$$

and in the fracture

$$\phi_\gamma \partial_t c_\gamma + \text{div}_\tau r_\gamma = f_\gamma + (r_1 \cdot n_1|_\gamma + r_2 \cdot n_2|_\gamma) \quad \text{in } \gamma \times (0, T),$$
$$r_\gamma = -D_\gamma \delta \nabla c_\gamma \quad \text{in } \gamma \times (0, T),$$
$$c_\gamma = 0 \quad \text{on } \partial \gamma \times (0, T),$$
$$c_\gamma(\cdot, 0) = c_{0,\gamma} \quad \text{in } \gamma.$$

⇒ Communication between the fracture and the rock matrix.
Formulation as an interface problem (GTP Schur)

- The same (as with simple DD) Dirichlet-to-Neumann operators, for \(i = 1, 2 \):

\[
S^\text{DtN}_i : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma},
\]

where \((c_i, r_i), \ i = 1, 2,\) is the solution of

\[
\begin{align*}
\mathcal{L}(c_i, r_i) &= f, \quad \text{in } \Omega_i \times (0, T), \\
\mathcal{M}(c_i, r_i) &= 0, \quad \text{in } \Omega_i \times (0, T), \\
c_i &= \lambda, \quad \text{on } \gamma \times (0, T), \\
c_i(\cdot, 0) &= c_0, \quad \text{in } \Omega_i.
\end{align*}
\]
Formulation as an interface problem (GTP Schur)

The same (as with simple DD) Dirichlet-to-Neumann operators, for $i = 1, 2$:

$$S^\text{DtN}_i : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)_{|\Gamma},$$

where $(c_i, r_i), \ i = 1, 2,$ is the solution of

$$\begin{align*}
L(c_i, r_i) &= f, \quad \text{in } \Omega_i \times (0, T), \\
M(c_i, r_i) &= 0, \quad \text{in } \Omega_i \times (0, T), \\
c_i &= \lambda, \quad \text{on } \gamma \times (0, T), \\
c_i(\cdot, 0) &= c_0, \quad \text{in } \Omega_i.
\end{align*}$$

Different space-time interface problem: instead of

$$- \sum_{i=1}^2 S^\text{DtN}_i(\lambda, 0, 0) = \sum_{i=1}^2 S^\text{DtN}_i(0, f, c_0),$$

$$\upharpoonright \quad S\lambda = \chi, \quad \text{on } \gamma \times (0, T).$$
The same (as with simple DD) Dirichlet-to-Neumann operators, for \(i = 1, 2 \):

\[
S_i^{DtN} : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_{\Gamma},
\]

where \((c_i, r_i), i = 1, 2\), is the solution of

\[
\begin{align*}
\mathcal{L}(c_i, r_i) &= f, & \text{in } \Omega_i \times (0, T), \\
\mathcal{M}(c_i, r_i) &= 0, & \text{in } \Omega_i \times (0, T), \\
c_i &= \lambda, & \text{on } \gamma \times (0, T), \\
c_i(\cdot, 0) &= c_0, & \text{in } \Omega_i.
\end{align*}
\]

Different space-time interface problem:

\[
\begin{align*}
\mathcal{L}_\gamma(\lambda, r_\gamma) + S\lambda &= \chi + f_\gamma, & \text{in } \gamma \times (0, T), \\
\mathcal{M}_\gamma(\lambda, r_\gamma) &= 0, & \text{in } \gamma \times (0, T), \\
\lambda(\cdot, 0) &= c_{0,\gamma}, & \text{in } \gamma.
\end{align*}
\]
Formulation as an interface problem (GTP Schur)

The same (as with simple DD) Dirichlet-to-Neumann operators, for \(i = 1, 2 \):

\[
S^D_{\text{DtN}}: (\lambda, f, c_0) \mapsto (r_i \cdot n_i)_{|\Gamma},
\]

where \((c_i, r_i), \ i = 1, 2\), is the solution of

\[
\mathcal{L}(c_i, r_i) = f, \quad \text{in } \Omega_i \times (0, T),
\]

\[
\mathcal{M}(c_i, r_i) = 0, \quad \text{in } \Omega_i \times (0, T),
\]

\[
c_i = \lambda, \quad \text{on } \gamma \times (0, T),
\]

\[
c_i(\cdot, 0) = c_0, \quad \text{in } \Omega_i.
\]

Different space-time interface problem:

\[
\mathcal{L}_{\gamma}(\lambda, r_\gamma) + S\lambda = \chi + f_\gamma, \quad \text{in } \gamma \times (0, T),
\]

\[
\mathcal{M}_{\gamma}(\lambda, r_\gamma) = 0 \quad \text{in } \gamma \times (0, T),
\]

\[
\lambda(\cdot, 0) = c_{0,\gamma}, \quad \text{in } \gamma.
\]

Two possible preconditionners:

- a Neumann-Neumann preconditionner with weights
Formulation as an interface problem (GTP Schur)

- The same (as with simple DD) Dirichlet-to-Neumann operators, for \(i = 1, 2 \):
 \[
 S_i^{DtN} : (\lambda, f, c_0) \mapsto (r_i \cdot n_i)|_\Gamma,
 \]
 where \((c_i, r_i), \ i = 1, 2\), is the solution of

 \[
 \begin{align*}
 \mathcal{L}(c_i, r_i) &= f, \quad \text{in } \Omega_i \times (0, T), \\
 \mathcal{M}(c_i, r_i) &= 0, \quad \text{in } \Omega_i \times (0, T), \\
 c_i &= \lambda, \quad \text{on } \gamma \times (0, T), \\
 c_i(\cdot, 0) &= c_0, \quad \text{in } \Omega_i.
 \end{align*}
 \]

- Different space-time interface problem:

 \[
 \begin{align*}
 \mathcal{L}_\gamma(\lambda, r_\gamma) + S\lambda &= \chi + f_\gamma, \quad \text{in } \gamma \times (0, T), \\
 \mathcal{M}_\gamma(\lambda, r_\gamma) &= 0 \quad \text{in } \gamma \times (0, T), \\
 \lambda(\cdot, 0) &= c_{0,\gamma}, \quad \text{in } \gamma.
 \end{align*}
 \]

- Two possible preconditioners:
 - a Neumann-Neumann preconditionner with weights
 - a local preconditioner (coming from the observation that the interface problem is dominated by the 2nd order operator)
Transmission conditions for a GTO Schwarz method

Taking a linear combination of the transmission conditions for the GTP Schur method we obtain:

\[-r_1 \cdot n_1 + \alpha_1 c_{1,\gamma} + \phi_\gamma \partial_t c_{i,\gamma} + \text{div}_\tau r_{\gamma,1} = -r_2 \cdot n_1 + \alpha_1 c_{2,\gamma} + f_\gamma\]
\[r_{\gamma,1} = -D_\gamma \delta \nabla_\tau c_{1,\gamma}\]

\[-r_2 \cdot n_2 + \alpha_2 c_{2,\gamma} + \phi_\gamma \partial_t c_{2,\gamma} + \text{div}_\tau r_{\gamma,2} = -r_1 \cdot n_2 + \alpha_2 c_{1,\gamma} + f_\gamma\]
\[r_{\gamma,2} = -D_\gamma \delta \nabla_\tau c_{2,\gamma}\]
We use Ventcell to Robin operators, for $i = 1, 2$:

$$S_i^{VtR} : (\theta_i, f, c_0, f_{\gamma}, c_{0,\gamma}) \mapsto (-r_i \cdot n_j + \alpha c_i)|\Gamma,$$

where $(c_i, r_i, c_{i,\gamma}, r_{\gamma,i})$, $i = 1, 2$, is the solution of

$$\mathcal{L}(c_i, r_i) = f, \quad \text{in } \Omega_i \times (0, T),$$

$$\mathcal{M}(c_i, r_i) = 0, \quad \text{in } \Omega_i \times (0, T),$$

$$-r_i \cdot n_i + \alpha c_{i,\gamma} + \phi_{\gamma} \partial_t c_{i,\gamma} + \text{div}_\tau r_{\gamma,i} = \theta_i, \quad \text{on } \gamma \times (0, T),$$

$$r_{\gamma,i} + D_{\gamma} \delta \nabla_\tau c_{i,\gamma} = 0, \quad \text{on } \gamma \times (0, T),$$

$$c_i(\cdot, 0) = c_0, \quad \text{in } \Omega_i$$

$$c_{i,\gamma}(\cdot, 0) = c_{0,\gamma}, \quad \text{in } \gamma.$$
Formulation as an interface problem (GTO Schwarz)

We use Ventcell to Robin operators, for $i = 1, 2$:

$$S_i^{VtR} : (\theta_i, f, c_0, f_\gamma, c_{0,\gamma}) \mapsto (-r_i \cdot n_j + \alpha c_i)|_{\Gamma},$$

where $(c_i, r_i, c_{i,\gamma}, r_{\gamma,i})$, $i = 1, 2$, is the solution of

- $\mathcal{L}(c_i, r_i) = f$, in $\Omega_i \times (0, T)$,
- $\mathcal{M}(c_i, r_i) = 0$, in $\Omega_i \times (0, T)$,
- $-r_i \cdot n_i + \alpha c_{i,\gamma} + \phi_\gamma \partial_t c_{i,\gamma} + \text{div}_\tau r_{\gamma,i} = \theta_i$, on $\gamma \times (0, T)$,
- $r_{\gamma,i} + D_\gamma \delta \nabla_\tau c_{i,\gamma} = 0$, on $\gamma \times (0, T)$,
- $c_i(\cdot, 0) = c_0$, in Ω_i
- $c_{i,\gamma}(\cdot, 0) = c_{0,\gamma}$, in γ.

Space-time interface problem:

$$\theta_1 = S_2^{VtR}(\theta_2, f, c_0, f_\gamma, c_{0,\gamma}) + f_\gamma, \quad \text{on } \gamma \times (0, T),$$
$$\theta_2 = S_1^{VtR}(\theta_1, f, c_0, f_\gamma, c_{0,\gamma}) + f_\gamma, \quad \text{on } \gamma \times (0, T).$$
Numerical results

Geometry and boundary conditions.

- Isotropic coefficients: $D_i = 1$, $i = 1, 2$, and $D_\gamma = 1/\delta = 1000$.

Numerical results

Geometry and boundary conditions.

- Isotropic coefficients: $D_i = 1$, $i = 1, 2$, and $D_\gamma = 1/\delta = 1000$.
- Zero source terms and initial condition.
- Spatial discretization: uniform rectangular mesh $h = 1/100$ → mixed FE with the lowest-order Raviart-Thomas spaces.
- Time discretization (case 1): conforming grids $\Delta t_m = \Delta t_\gamma = T/300$ with $T = 0.5$.
Snapshots of solution - concentration field c

$t = \Delta t$

$t = T/4$

$t = T/2$

$t = T$
Snapshots of solution - diffusive flux r

$t = \Delta t$

$t = T/4$

$t = T/2$

$t = T$
Convergence - GMRES

- L² concentration errors (c)
- L² flux errors (r)
- L² error versus α

- GT Schur with no preconditioner
- GTP Schur with local preconditioner
- GTP Schur with NN preconditioner
- GTO Schwarz method
Future work

- Coupling with advection in the fractures: the GTO Schwarz gives a rather remarkable convergence speed. With an explicit time scheme for advection, using smaller time steps in the fracture avoid imposing a time step in the two subdomains dictated by the CFL number of the equation in the fracture.

- Develop stopping criteria to stop the DD iterations as soon as the discretization error is reached, with a posteriori estimates (with Sarah Ali Hassan (PhD), Martin Vohralík & Michel Kern).