### Discrimination measures for survival outcome

V. Viallon <sup>1</sup> and A. Latouche <sup>2</sup>

<sup>1</sup>Université de Lyon 1, IFSTTAR <sup>2</sup>Conservatoire national des arts et métiers

19 octobre 2011

### Criteria for evaluating prognostic models

#### Discrimination

- Measures the ability to distinguish the individuals who developped the disease and those who did not
- The area under the receiver operating curve (AUC) is a standard tool for evaluating the discrimination of prognostic model

#### Calibration

- The calibration categorizes patients according to quantiles of risk (according to the model)
- ► Compares (average) predicted risk with the observed proportion of events in each quantile

### Outline

Extension of the AUC to survival outcomes

- A novel estimator of the time-dependent AUC based on the predictiveness curve
- ► A simulation study comparing the derived estimator to Heagerty and Zheng (Bcs, 2005), Chambless and Diao (SiM, 2006) proposals
- Illustration

### **AUC**

- ► For a continuous (bio)marker X and a binary outcome D
- ▶ ROC plots sensitivity, P(X > c | D = 1), against 1 minus specificity,  $1 P(X \le c | D = 0)$ , for all possible values c
- ► The AUC is then simply the area under ROC

#### **AUC** extensions

- Harrel's concordance index: the fraction of pairs of patients whose predicted survival times are correctly ordered among all pairs that can actually be ordered
- ► Gonen (Bka, 2005) derived an analytical expression of the c-index under the Cox model leading to an estimator that is not affected by censoring

# Time-dependent ROC curves and AUC(t)

In prospective cohort study, a binary outcome can change over time e.g. a disease status  $\Rightarrow$  legitimate to consider time-dependent ROC curve

 Heagerty et al. defined time-dependent sensitivity and specificity

Leads to distinct definitions of the time-dependent ROC curves and time-dependent AUC, AUC(t).

### Heagerty and Zheng Taxonomy

Let  $T_i$  denotes the survival time for subject i

- Cases are said to be
  - incident cases where  $T_i = t$ , is used to define cases at time t
  - cumulative cases where  $T_i \leq t$  is used.
- Controls are said to be
  - static controls when  $T_i > t^*$  for a fixed  $t^*$  is used to define them
  - *dynamic controls* when  $T_i > t$  is used.

#### This talk focus on Cumulative/Dynamic:

Discriminating between subjects who die prior to a given time  $t^\prime$  and those survive beyond  $t^\prime$ 



### Some Notations for AUC

- ▶ Let T<sub>i</sub> and C<sub>i</sub> denote survival and censoring times for subject i
- ▶ We observe  $(Z_i, \delta_i)$  where  $Z_i = \min(T_i, C_i)$  and  $\delta_i = I(T_i \leq C_i)$
- Denote D<sub>i</sub>(t) the time-dependent outcome status for subject i at time t

For any threshold c, the true positive and false positive rates are time-dependent functions defined as

- ► TPR(c, t) = P(X > c|D(t) = 1)
- ▶ FPR(c, t) = P(X > c|D(t) = 0)

#### The time-dependent ROC curve ROC(t) plots

ightharpoonup TPR(c, t) vs

► FPR(c, t) for any threshold c

so that

$$AUC(t_0) = \int_{-\infty}^{\infty} TPR(c, t_0) d\left[FPR(c, t_0)\right], \tag{1}$$

where  $d[FPR(c, t_0)] = \partial c \times (\partial FPR(c, t_0)/\partial c)$ .

# Cumulative cases and Dynamic controls

The time-dependent outcome status  $D_i(t) = 1\{T_i \le t\}$ 

► Cumulative true positive rates are  $\mathsf{TPR}^{\mathbb{C}}(c,t) = \mathsf{P}(X > c | T \le t) = \mathsf{P}(X > c | D_i(t) = 1)$ 

▶ Dynamic false positive rates are  $FPR^{\mathbb{D}}(c,t) = P(X > c | T > t) = P(X > c | D_i(t) = 0)$ 

Estimators can not be directly derived from the above definitions as  $D_i(t)$  is not fully observable with censoring

# Work around for $AUC^{\mathbb{C},\mathbb{D}}$

Using Bayes's theorem

$$\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t_0) = \int_{-\infty}^{\infty} \int_{c}^{\infty} \frac{F(t_0; X = x)[1 - F(t_0; X = c)]}{[1 - F(t_0)]F(t_0)} g(x)g(c)dxdc$$

with

- ▶  $F(t) = P(T \le t)$  be the absolute risk
- ▶  $F(t; X = x) = P(T \le t | X = x)$  be the conditional absolute risk
- g the density function of marker X

### Predictiveness curve

- ► (Too) Many criteria are used for evaluating discrimination
- ▶ The proportion of explained variation
- The standardized total gain
- Risk reclassification measures (Pencina, SiM, 2006)
- ▶ All express as simple functions of the predictiveness curve (Gu and Pepe, International Journal of Biostatistics, 2009)
- ▶ Let  $R(q) = P[D = 1|X = G^{-1}(q)]$  be the risk associated to the qth quantile of marker X
- ▶ The predictiveness curve plots R(q) versus q

# A proposal for AUC C/D for binary outcome

▶ let  $R(q) = P[D = 1|X = G^{-1}(q)]$  denote the conditional absolute risk associated to the q-th quantile  $(G^{-1}(q))$  of marker X.

▶ The predictiveness curve plots R(q) versus q and describes the distribution of P(D=1|X)

We established that

$$AUC = \frac{\int_0^1 qR(q)dq - p^2/2}{p(1-p)},$$
 (2)

where  $p = P(D = 1) = \int_0^1 R(q) dq$ .

# Predictiveness curves and their corresponding AUC values

With 
$$p = P(D = 1) = \int_0^1 R(q) dq = 0.5$$



# A proposal for AUC C/D for survival outcome

▶ Set  $R(t; q) = P(D(t) = 1|X = G^{-1}(q)) = F(t|X = G^{-1}(q))$  the time-dependent predictiveness curve

We established that

$$AUC^{\mathbb{C},\mathbb{D}}(t) = \frac{\int_0^1 cR(t;c)dc - \frac{F(t)^2}{2}}{F(t)[1 - F(t)]},$$
 (3)

Proper estimation of  $AUC^{\mathbb{C},\mathbb{D}}(t)$  requires proper estimation of R(t;c)

# A new estimator for $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t)$

- Assume we are given an estimator  $\widehat{F}_n(t_0;x)$  of the conditional absolute risk  $F(t_0;x)$
- ▶ Recall that *G* and *g* denote the cumulative distribution function and the density function of *X*.
- ► Since  $\int_0^1 qR(t_0; q)dq = \int_{-\infty}^{\infty} G(x)F(t_0; x)g(x)dx$ ,

the empirical counterpart of the quantity  $\int_0^1 qR(t_0;q)dq$  is given by

$$\frac{1}{n}\sum_{i=1}^n\frac{i}{n}\widehat{F}_n(t_0;X_{(i)}),$$

where  $X_{(i)}$  denotes the *i*-th order statistic attached to the sample  $X_1, ..., X_n$ .

# A new estimator for $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t)$

- ▶ The marginal absolute risk function F, can be directly estimated using Kaplan-Meier estimator  $\widehat{F}_{n,(1)}(t_0)$ .
- ▶ Observing that  $F(t_0) = \int F(t_0; x)g(x)dx$ , an alternative to  $\widehat{F}_{n,(1)}(t)$  relying on the conditional risk estimate is

$$\widehat{F}_{n,(2)}(t_0) = \frac{1}{n} \sum_{i=1}^n \widehat{F}_n(t_0; X_i).$$

This yields two estimators for  $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t_0)$ , namely, for k=1,2,

$$AUC_{n,(k)}^{\mathbb{C},\mathbb{D}}(t_0) = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{i}{n} \widehat{F}_n(t_0; X_{(i)}) - \widehat{F}_{n,(k)}^2(t_0)/2}{\widehat{F}_{n,(k)}(t_0) [1 - \widehat{F}_{n,(k)}(t_0)]}.$$
 (4)

Experimental results (not shown) suggested better performances results obtained with k = 2.



# Existing estimators for AUC $^{\mathbb{C},\mathbb{D}}(t)$ : HLP

Heagerty Lumley and Pepe (Bcs, 2000) developed a nonparametric estimator for  $AUC^{\mathbb{C},\mathbb{D}}(t)$  based on the nearest-neighbor bivariate distribution estimator of Akritas (1994).

- Rewriting sensitivity P(X > c|D(t) = 1) = F(t|X > c)P(X > c)/F(t)
- Rewriting specificity  $P(X \le c | D(t) = 0) = S(t | X \le c)P(X \le c)/\{1 F(t)\}$

Naive plugin estimators of sensitivity and specifity for S may not be monotone in c.

# Estimators for $AUC^{\mathbb{C},\mathbb{D}}(t)$ : HLP

Proper estimates express sensitivity and specificity as functions of the bivariate survival function S(c, t) = P(X > c, T > t), that is

$$P(X > c | D(t) = 1) = \frac{1 - G(c) - S(c, t)}{F(t)}$$

and

$$P(X \le c | D(t) = 0) = 1 - \frac{S(c, t)}{1 - F(t)}$$

An use Equation (1) with simple numerical integration: survivalROC package

# Existing estimators for $AUC^{\mathbb{C},\mathbb{D}}(t)$ : Chambless-Diao

- ▶ They suggested a recursive calculation over the ordered times of events for  $AUC^{\mathbb{C},\mathbb{D}}(t)$ .
- Figure Given two random individuals i and j,  $AUC^{\mathbb{C},\mathbb{D}}(t) = P(X_i > X_j | D_i(t) = 1, D_j(t) = 0)$ , with  $D_i(t) = 1\{T_i \leq t\}$

Applying Bayes' theorem leads to

$$\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t) = rac{\mathsf{P}(X_i > X_j, D_i(t) = 1, D_j(t) = 0)}{\mathsf{P}(D_i(t) = 1)\mathsf{P}(D_j(t) = 0)}$$

We refer to this method as CD1: SAS

# Existing estimators for $AUC^{\mathbb{C},\mathbb{D}}(t)$ : Chambless-Diao

From the Work Around Equation above, the authors observe that

$$\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t_0) = \frac{\mathsf{E}\big[\{1-S(t;U)\}S(t;V)\mathit{I}(V$$

where U and V are independent observations of X.

- They Suggest to estimate the conditional survival functions under a Cox model
- ► The bivariate expectation is estimated as the mean over all (U, V) pairs of distinct observations.

We refer to this method as CD2: SAS and R

# Simulation Study

- ▶ Compare our estimators of  $AUC^{\mathbb{C},\mathbb{D}}(t)$  with those proposed in the literature
- ▶ Assess the effect of a misspecified model when estimating the conditional absolute risk– on the  $AUC^{\mathbb{C},\mathbb{D}}(t)$  estimation.

$$\lambda_1(t|X) = \frac{\exp(\beta X)}{1+t}$$

$$\lambda_2(t|X) = t \exp\left(\frac{\beta X t^2}{2}\right)$$

$$\lambda_3(t|X) = \beta_0 t + \frac{\beta}{t+1} X,$$

evaluation times: the first quartile  $t_{q1}$ , the median  $t_{q2}$  and third quartile  $t_{q3}$  of the survival time distribution.

# Simulations: Censoring schemes

- ▶ We applied an "administrative censoring" occurring at the time corresponding to the 80% percentile of the survival time distribution.
- ▶ (i) no additional censoring,
- (ii)  $C_i \sim \mathcal{E}(\tau_1)$
- (iii)  $C_i \sim \mathcal{E}(\tau_2)$ ,

where rates  $\tau_1$  and  $\tau_2$  of the exponential distribution  $\mathcal{E}(\cdot)$  were respectively chosen so that censoring rate attained 25% and 75% respectively.

### Mean Bias

Table: Results of the simulation study. Comparisons between several estimators of  $AUC^{\mathbb{C},\mathbb{D}}(t)$ . Averaged bias (multiplied by 100) obtained from 100 runs are reported.

|          | 100× Bias          |                    |        |        |        |        |        |        |  |  |
|----------|--------------------|--------------------|--------|--------|--------|--------|--------|--------|--|--|
| Eval.    | CD2                | VL                 | CD2    | VL     | HLP    | CD1    | CD2    | VL     |  |  |
| Time     | Cox                | Cox                | Aalen  | Aalen  | NNE    |        | KM     | KM     |  |  |
|          | Standard Cox model |                    |        |        |        |        |        |        |  |  |
|          | Censorii           | Censoring scheme 1 |        |        |        |        |        |        |  |  |
| $t_{q1}$ | -0.302             | -0.168             | -0.495 | -0.361 | -1.033 | 0.131  | -1.185 | -1.052 |  |  |
| $t_{q2}$ | -0.284             | -0.082             | 0.107  | 0.310  | -1.377 | -0.239 | -1.463 | -1.262 |  |  |
| $t_{q3}$ | -0.301             | 0.103              | 1.083  | 1.485  | -1.457 | -0.598 | -1.822 | -1.413 |  |  |
|          | Censoring scheme 2 |                    |        |        |        |        |        |        |  |  |
| $t_{q1}$ | -0.016             | 0.117              | -0.422 | -0.288 | -1.191 | 0.031  | -1.244 | -1.111 |  |  |
| $t_{q2}$ | -0.031             | 0.170              | 0.220  | 0.423  | -1.304 | -0.159 | -1.316 | -1.115 |  |  |
| $t_{q3}$ | 0.009              | 0.415              | 1.728  | 2.132  | -0.853 | -0.280 | -1.185 | -0.774 |  |  |
| •        |                    |                    |        |        |        |        |        |        |  |  |

### Mean Bias

Table: Results of the simulation study. Comparisons between several estimators of  $AUC^{\mathbb{C},\mathbb{D}}(t)$ . Averaged bias (multiplied by 100) obtained from 100 runs are reported.

|          | 100× Bias              |        |       |       |        |        |        |        |  |
|----------|------------------------|--------|-------|-------|--------|--------|--------|--------|--|
| Eval.    | CD2                    | VL     | CD2   | VL    | HLP    | CD1    | CD2    | VL     |  |
| Time     | Cox                    | Cox    | Aalen | Aalen | NNE    |        | KM     | KM     |  |
|          | Time-varying Cox model |        |       |       |        |        |        |        |  |
|          | Censoring scheme 1     |        |       |       |        |        |        |        |  |
| $t_{q1}$ | 6.775                  | 6.906  | 2.748 | 2.882 | -1.783 | 0.163  | -0.864 | -0.731 |  |
| $t_{q2}$ | -2.303                 | -2.107 | 6.002 | 6.199 | -2.333 | 0.274  | -0.756 | -0.556 |  |
| $t_{q3}$ | -9.046                 | -8.629 | 7.012 | 7.377 | -1.419 | -0.047 | -0.721 | -0.317 |  |
|          | Censoring scheme 2     |        |       |       |        |        |        |        |  |
| $t_{q1}$ | 5.796                  | 5.927  | 2.395 | 2.528 | -2.457 | -0.229 | -1.329 | -1.196 |  |
| $t_{q2}$ | -3.200                 | -3.004 | 5.670 | 5.867 | -2.828 | 0.071  | -1.080 | -0.881 |  |
| $t_{q3}$ | -9.948                 | -9.535 | 7.176 | 7.536 | -1.343 | 0.492  | -0.456 | -0.057 |  |
| •        |                        |        |       |       |        |        |        |        |  |

### Mean Bias

Table: Results of the simulation study. Comparisons between several estimators of  $AUC^{\mathbb{C},\mathbb{D}}(t)$ . Averaged bias (multiplied by 100) obtained from 100 runs are reported.

|          | 100× Bias            |                    |        |        |        |        |        |        |  |  |
|----------|----------------------|--------------------|--------|--------|--------|--------|--------|--------|--|--|
| Eval.    | CD2                  | VL                 | CD2    | VL     | HLP    | CD1    | CD2    | VL     |  |  |
| Time     | Cox                  | Cox                | Aalen  | Aalen  | NNE    |        | KM     | KM     |  |  |
|          | Aalen additive model |                    |        |        |        |        |        |        |  |  |
|          | Censorii             | Censoring scheme 1 |        |        |        |        |        |        |  |  |
| $t_{q1}$ | -7.807               | -7.674             | 0.470  | 0.603  | -1.432 | 0.496  | -0.686 | -0.554 |  |  |
| $t_{q2}$ | -5.157               | -4.955             | 0.047  | 0.248  | -1.861 | -0.015 | -0.980 | -0.779 |  |  |
| $t_{q3}$ | -2.186               | -1.778             | 0.221  | 0.621  | -1.324 | 0.294  | -0.500 | -0.099 |  |  |
|          | Censoring scheme 2   |                    |        |        |        |        |        |        |  |  |
| $t_{q1}$ | -7.757               | -7.624             | -0.337 | -0.204 | -2.247 | -0.416 | -1.553 | -1.420 |  |  |
| $t_{q2}$ | -5.099               | -4.898             | -0.269 | -0.070 | -1.638 | -0.199 | -0.917 | -0.718 |  |  |
| $t_{q3}$ | -2.109               | -1.703             | -0.420 | -0.022 | -1.791 | -1.342 | -0.994 | -0.593 |  |  |
| -        |                      |                    |        |        |        |        |        |        |  |  |

# Assessing the accuracy of $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}$ estimates using predictiveness curves

Effect of a misspecified model – when estimating the conditional absolute risk– on the  $AUC^{\mathbb{C},\mathbb{D}}(t)$  estimation

- Accurate estimates of  $R(t_0; q)$  should yield accurate estimates for  $AUC^{\mathbb{C},\mathbb{D}}(t_0)$ .
- ▶ Two evaluation times were considered: the first quartile  $t_{q1}$  and the median  $t_{q2}$  of the survival time distribution.
- ▶ Black bullets represent KM estimators of the unconditional absolute risk for each decile of predicted risk

### PC Cox time-varying effect; 1st quartile

PC is underestimated on the quantiles interval [0, 0.85] and slightly overestimated on the interval [0.85,1]



# PC Cox time-varying effect; median



### AUC(t): Time Varying Cox model

 $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t_1)$  is largely overestimated with Cox at first quartile



### Illustration: VA Lung

- Overall, 137 males with inoperable cancer were randomized to a standard or a test chemotherapy.
- ▶ Death was considered as the endpoint, and more than 93% of the participants died during the study.
- Predictors of mortality include type of treatment, age, histological type of tumor and the Karnofsky score (which is a performance status measure).
- We considered a 500-day follow-up and a Cox model was used to build a risk score out of these baseline covariates.
- lackbox Our objective: estimate the AUC $^{\mathbb{C},\mathbb{D}}(t)$  attached to this score.
- lacktriangle we computed estimates of  $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t)$  with HLP and ours

### Predictiveness Curve VA Lung 1st Quartile



# Predictiveness Curve VA Lung 3rd Quartile



# $\mathsf{AUC}^{\mathbb{C},\mathbb{D}}(t)$ VA Lung



#### Conclusion

- ▶ Our approach relies on the additional estimation of the cumulative distribution of *X* which might increase variability.
- The nonparametric estimator of Chambless-Diao was observed to slightly outperform its three nonparametric competitors (including our approach) in most of our empirical examples
- ► Except for high censoring rates and late evaluation times; where our approach appeared to perform the best
- ► Conditional risk function, through the predictiveness curve, is the key when assessing discrimination of prognostic tools

### Readings

- Pepe, M.S. et al. Integrating the Predictiveness of a Marker with Its Performance as a Classifier. American Journal of Epidemiology. 2007
- Heagerty, P.J. and Zheng, Y. Survival Model Predictive Accuracy and ROC Curve. Biometrics. 2005; 61, 92-105.
- Heagerty, Lumley and Pepe.Time—dependent ROC curves for censored Survival Data and a Diagnostic Marker. Biometrics; 2000 56, 337–344
- ▶ Viallon, V and Latouche, A.; Discrimination Measures for survival outcome: connection between the AUC and the predictiveness curve. Biometrical Journal. 2011; 53(2):217-36
- See also survAUC implements various estimators