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Finite dimension controllability

1 Framework

Consider matrices A : RY — RY, B : RY — R (think
M << N). Take some function u : [0,T] — R, y, € RY,
and consider y : [0,7] — R" the solution to

{diy = Ay + Bu, t € [0,T], (1)
y(0) = yo.

Question: take y; € RV, is there u such that y(T) = y; ?

2 Intuition

Consider an explicit scheme (7 > 0): %y(i) & (+ T; — ()

and putitin (1), u, := u(nt), x, := y(ntr) —



Xpe1 = X, + T(AXx, + Bu,)) = (I + TA)x, + 7Bu,. (2)
Propagate (2), and take N(= dim R") iterations from 0 gives

xy =TBuy_1 + (I + TA)TBuy_, +
e+ (L + TAN ' TBuy + (Id + TAN"'1Ax,.

Form the matrix

3)

[tB (I + TA)TB],
and see that
Im([tB (I + TA)TB]) = Im([B AB)),
see that
Im([tB (I + TA)TB (I + TA)*tB]) = Im([B AB A’B)),



Im([7B (I + TA)TB (I + TA)*7B ... I +TA)N"1B]) =

Im([B AB A’B ... ANIB)).
Now if more than N steps of time, then xy can be any y; if

Im([B AB A’B ... AN"1B]) =RV,
Remark that this condition is ““necessary’’ in the case of N
iterations exactly.



3 Result for the ode

Theorem 1. Kalman’s condition. The necessary and suffi-
cient condition, such that, given yy, for any y; there exists u
such that y(T') = y; where y is the solution of (1) is that

Im([B AB A’B A°B ..AV"'B]) =R". (4)

We speak then about exact controllability.



Remarks:

The condition does not depend on 7.

The condition does not depend on yj.

The condition is extremely diflicult to check.

I did not precise the type of solutions of (1): if u is not regular,

may not even be able to define a solution....

4 Examples



d
{ dt is not controllable.

d
_x = —x
{ ‘ff ! 2 is controllable.

5 Mild solution

Formally, how to find the solution of (1).
Apply the Duhamel’s principle:



Find the general solution without Bu(z):

Y(r) = exp(Af)yo
where exp(A) := ).”, %, then ““the’’ solution of (1) is

y(t) = exp(At)yg + f t exp(A(t — s))Bu(s)ds. (5)
0

If u € L>((0,T), RM) then (5) leads to y which satisfies (1) al-
most everywhere.



6 Check the controllability condition on the mild
solution

To obtain any y;, it is clear that it is necessary and sufficient
that the map

U f ' exp(A(T — s))Bu(s)ds € RY

0
is onto. In finite dimenTsion it is the case iff one has

Yu € L*((0,7),RN), f 'vexp(A(T — s))Bu(s)ds =0 = v =0,
0
for v € RY.

O Proof of the theorem:



Assume that ;
U f exp(A(T — s))Bu(s)ds € RY
0

is not onto.
Then there exists v # 0 such that for any u one has

f ' 'vexp(A(T — s))Bu(s)ds = 0.
Take u(s) := ‘B gxp( 'A(T — $))v.
Then fT |'vexp(A(T — s))BJ?ds = 0.
Thus Vtoe [0,T], ‘vexp(Af)B = 0.



But ¢ — 'vexp(Ar)B is an analytic map, thus the coeflicient of
its Taylor expansion should be 0.
They are ‘vB, 'VAB, .....vAN~!B, ........ meaning that
R(A,B) := [B AB A’B...AN"1B]
has an non zero orthogonal to its image and thus is not onto.

Orthogonality
Figure 1



v € Im(R(a,b))*

Im(R(a,b))

O Conversely:



Let us denote by,...,by the column of B, the im-
age of R(A,B) is thus generated by by,....AN"'by,
by, ... AN"bs, . by, . AN Dy,

But necessarily each of this group of N vectors generates a
stable subspace of R" by A.

For example, if by, ...,AN"'b, is a free family then AVb, €
Vect(by, ...,AV"1b)), if not there exists a combination A*b; +
1A, + ...+ by = 0 and we are done.

Thus, for any P € N, A”b; € Im(R(A,B)).

If the image of R(A,B) is not R", there then exists a nonzero
v € RY, such that "vA"b; = 0 for any P < N — 1 and b;, thus



for any P € N. Thus ‘vexp(tA)B = 0 for any ¢ € [0,T] which
proves that the map

u— f ' exp(A(T — s))Bu(s)ds
0

1S not onto.

7 Minimal control

Assume that the Kalman condition is satifisied, that is R(A,B)
has image R". Then f ' exp(A(T —s))Bu(s)ds can be anything
with an appropriate LTtO But you can add to u anything in the

kernel of L : u — f exp(A(T — s))Bu(s)ds.
0



So look for u € (ker L) = ImL*, where L* is defined by

(L*Vuy 20,1,y = (VILU)RN.
Easy computation
L*v(s) := 'Bexp(A(T — s))v.
The control of minimal norm can be looked for with such a
form and thus is regular. So a real solution of the equation

(1).
8 Remark on exact controllability

We have proven the Kalman’s condition by playing on the or-
thogonal of the image. It works only in finite dimension where



the orthogonal of the image is O iff the image is the total space.
In infinite dimension this is equivalent to a dense image.

O What if the Kalman’s condition fails

Take ey, ..., e, basis of Im(R(A,B)). Complete with e,1, .., ey a

basis of RY. P the matrix with component of ej, ....,ex. B =
P 'BA’ = P7'AP . Put z = P~'y. Then y sol of (1) iff z sol of
i A /
T8 = A’z + B'u.
B A A
NOWB’=( 1)A’=( : 2),B1isr><M,Alisr><r,A3is
0 0 Aj

N-—-rXxN-—r. Writez=(§1)
2



%‘Zl = A121 +A220 + Buy, controlled part %ZQ = A3z3, UNncon-
trolled part, and R(A,B;) has rank r.



Extensions

Consider more general cases of control problem even in finite
dimension: e.g

%Y(f) = w1 (X1 (y(1)) + uz() X2(y(1))
where X; X, have value in R?, and u; u, are real functions.
Presumably only possible to go in the direction X; or X.
But X et X, depend on the position. Thus their variation may
lead to other directions:



The baby stroller




The baby stroller: The model

X1 = U1 Cc0Sx3, To = U1 sinxg, r3 = uy, n =3, m = 2.
4A0F 4AFr AP «=»




Theorem 2. Chow’s theorem.Everything is C*. If
Yy, vect(X1,Xo, [X1,X3]) = R3 then initial yo can be driven to
anything. With some u; and u, with %y(l) = u1(H)X1(y()) +
ur (1) Xo(y(1)).

[X1,X>] (Lie bracket) is a way of measuring some defects in
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the Schwarz’s theorem ( (9x81 gxz = a)z gxl ).

But Chow’s theorem (and some of its generalizations) has
great consequences:

Entropy (Caratheodory) principle

Let a system be governed by independant variables
(V1,V2,V3) € R’



Assume that V(V,V,,V3), AA(V1,V»,V3) a subspace that char-
acterizes some admissible paths; i.e. ¢ — 7y(f) has velocity
y'(t) € A(y(1)).

This A has a varying basis (X;,X>).

A generalization of Chow’s result (due to H. Sussmann) al-
lows to make a dichotomy.

Either all iterated lie brackets generates R> then any pair of
(V1,V1,V3) can be joined by admissible path.

Either there is at least a pair of (V1,V>,V3) that cannot be joined
by some admissible paths.



In the last situation, if for some reasons, you can characterize
the A(V1,V,,V3) by the kernel of a linear form 6Q(V;,V,,V3) :
R> — R where 6Q is regular enough,

Now by the Frobenius theorem (generalization of Cauchy-Lip-
schitz) the violation of Chow’s theorem = there exist from any
point a surface tangent to A that one characterizes by some re-
lation S(V{,V,,V3) = 0, S : R* — R. Then by construction
kerdS = keroQ, thus, there should be some function 7" such

that
_ 99
==

dS



Of course 0Q is the exchange of heat, T is the temperature,
S the entropy which characterizes the irreversibility of the
Joule’s effects.






Figure 2 A.Y. hand



Irreversible path with respect to pressure and temperature.
Application of entropy under that framework to economy may
be found in

Geogescu-Roegen: La décroissance. Entropie, €cologie,
économie.



The heat equation with
a distributed control /&

10 Framework

Open regular set €2
Figure 3




Controlled heat equation
0,y — Ay =uin (0,T) X Q,
{y =0 on (0,T) X 0Q2 (6)
y(t = 0) = yp, the initial data.

11 Notion of solutions

Strong solutions of (6) :
yo € L*(Q), u € C((0,T), H*(Q) N Hé(Q)),
or
u € WH(0,7), L*(Q)).



Weak solutions of (6) : on the account of the properties of
the Laplace operator A = —A on D(A) = H*(Q) N Hy(Q), one
can consider u € L*(0,7,L*(Q)) and define weak solutions:
satisfy pde of (6) in some (distribution) sense, and satisfy the
boundary conditions in another (weak) sense: basically to be
able to satisfy some formal integration by parts.

If yo € L*(Q), there exists C > 0 universal such that

Wl2qo0.r)x) < Cyolrzq) + [ulr2¢0.1)x0))-



12 Distributed control

One considers u € L*((0,T) X w), that is the control acts only
in w, and is 0 elsewhere.

Natural question: Given y; € L?(Q) can one find u €
L*((0,T)xw) such that y the solution of (6) satisfies y(7,.) = y;
o
If so for any yy and y, exact (distributed on w) controllability
for the heat equation.
But

Ve (0,T], y(t,.) € C(Q\ w).
Thus not exact (distributed) controllability.



O Natural question again: Given y; € L*(Q), and & > 0, can one
find u € L*((0,T) x Q) such that y the solution of (6) satisfies
(T,.) =yilo<&?

If so for any yy and y;, approximate (distributed on w) control-
lability for the heat equation.

Theorem 3. This time, Bingo.

O Natural question again: What are the y; that can be attained ?



Open question......

Take i = 0, any yo € L*(Q) and compute y the corresponding
solution of (6) with 4 = 0 and compute y(7T).

Given yy, can one find u such that the corresponding solution
of (6) satisfies y(T)) = y(T) ?

If so for any y, and any y,, then exact controllability to trajec-
tories.

Theorem 4. Bingo again.




In fact equivalent to Yyq find u such that y(T') = 0 (exact zero
controllability). (Exercise)



Formalism of controllability

O Rewrite (6) like a system

d., _

{ = Ay + Bu 7
¥(0) =0

Express formally the solution of (7) with the Duhamel princi-

ple in the semi-group form

y(@) = S()yo + f [ S(t — s)Bu(s)ds, (8)

0
where A : D(A) = H*(Q) N Hy(Q) - L*(Q) is —A and B :
L*((0,T) x w) — L*((0,T) x Q) is the extension by 0.
One sees on (8) that exact controllability to trajectories occurs
iff exact zero controllability occurs.



To ascertain exact zero controllability, find u such that

fT S(T — s)Bu(s)ds = —=S(T)yo.
0

The question of exact zero controllability is then formulated
as:
Let £ : L*((0,T) X Q) — L*(Q)

T

L(u) = f S(T — s)Bu(s)ds,
does there hold L(L*((0,T (; X Q) D S(T)(L*(Q)) ?



Abstract framework

Let H, H,, H; Hilbert spaces, C3 : D(C3) € D(C3) = H3 —
H, a closed operator, C, : H, — H; a continuous linear oper-
ator, then it is equivalent to say
M > 0, Yu € D(C3), |CLuly, < M|Cluly,
or to say
C2(Hy) € CG3(D(Cy)),
and if so, there exists Cy : H, — D(C3) such that
|CilHymvy) S M, Cy = C3C.
Proof:

It Cr(H») € C3(D(Cy)), for any zo € Hp dzz € D(C3) such that
Cy(z2) = C5(z3). Take z3 € ker(C3)* and put Ci(z2) = z3.



Let us show that C; is continuous, or that C; satisfies the
closed graph property. Take a converging sequence z,, of H»,
and assume that C;(zp,) is convergent. By continuity of C,
C»(z0,,) is convergent, and thus C3(C;(zp,)) is convergent, thus,
since (3 is closed (meaning here its graph is closed), Ci(z2,)
is converging to some element in ker(C3)*, which can only be
Ci(lim z5,,), thus the continuity.

Let M := |C1|L(H2,H3)- Then Vz; € D(C;)

|C3zilm, = max  (Chzilzdm, = max  (21|CG3C122)m,
22€H,, |22|H,=1 22€H,, |22]H,=1

=  max (Czi|Ciz)m, < M|Cizilm,
22€H,, |22|1,=1



O Conversely, if Yu € D(C3), |Culg, < M|Culy,.
Let A : C3(D(C3)) — H» defined by
A(C5(w) = Clu.
A is  basically (linear) continuous on continuous
C5(D(C3)) — extends uniquely to C5(D(C3)), and by O to
the orthogonal.
Take C; = A*....




Back to the heat equation

Take C, = S(T) with Hy := LAQ) and Cs : I2((0.T) X w) —
L*(Q) given by
T

L(u) := f S(T — t)Bu(s)ds.

0
Exact zero controllability for the heat equation <= there
exists M > 0O such that
¥z € LX(Q), IS(T)*zlr2) < MIL* (D120 Tyxw)-
Equality known as observability inequality. Very difficult to
obtain.



Computation of S(7')"

Take u = 0 in 6.
For ¢ in L*(Q), formally (® defined on [0,7] X Q with ®(T) =

¢.)

f ¢y(T)dx

Q
T T

= f f 0, Dydxdrt + f f 0, yDdxdrt + f ®(0)y(0)dx
0 JQ 0 JQ Q
T T

= f f 0, ®ydxdt + f ADOydxdt + f ®(0)y(0)dx,
0 JO 0

X Q)

if we assume @ = 0 on (0,7)



Take then ® the solution to (the well-defined problem)

0,0+ AD =0on (0,7) X Q
{CI)=Oon(O,T)><8Q

O(T) = ¢,
then
S(T)*(¢) = P(0).
Computation of L*:
Exercice

L ¢ = @0 1)xw-

©)



Observability inequality

Find some M > 0 such that V¢ € L*(Q) the solution of (9)
satisfies

T
|®(0)|§2(Q)3M2 f f |D|2dxdt.

Observe that if ® is O on (O,Tci ><Oa) then ®(0) = O then
¢ = 0. Because: take e, € Hé(Q) an eigenvector of —A
with eigenvalue A, that is —Ae, = A,¢e,. Take also <, [p = 1.
0<A,.1 <4, > oo

Then it ¢ = 277 ) une,, then @) = > et~y e,. Thus
®0)=0=pu, =0, Vn e N.

The observability inequality is true for any 7', and can be ob-
tained by means of Carleman’s inqualities.



Unlike modern fashion nowadays Carleman was a very pro-
ductive mathematician, but published very few papers.....



Many results and pictures taken from the books of
J.M. Coron.

E. Sontag.

J. Zabczyk.



Efkaristo poli for your attention.



